Skip to main content
Log in

Magnetic-Based Double Fano Resonances in Au-SiO2-Si Multilayer Nanoshells

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Compared to metallic nanostructures employed in plasmonics, dielectric materials with high refractive index can directly engineer magnetic responses in addition to the electric responses in plasmonic structures. In this work, we have demonstrated that the magnetic-based double Fano resonances can be achieved in the Au-SiO2-Si multilayer nanoshells due to the strong interaction between electric resonances and magnetic resonances. The observed double Fano resonances arise from two distinct origins: (1) the interference of magnetic dipole resonance of Si core and electric dipole resonance of Au shell, which excites a Fano resonance even in a symmetric nanoshell, and (2) the interference between magnetic quadrupole resonance of Si core and electric quadrupole resonance of Au shell, introduced by symmetry breaking of Si core. Dipole radiative enhancement spectra are used to analyze electric and magnetic responses of Au-SiO2-Si multilayer nanoshells, and the asymmetric Fano line shape is fitted by a coupled oscillator model. Also, magnetic-based Fano resonances can be adjusted easily by means of varying the geometrical parameters. The spectral sensitivity of Au-SiO2-Si multilayer nanoshells is also investigated, and the Fano resonance modulated from scratch can be found when the intermediate dielectric layer between Au shell and Si core is altered. The Au-SiO2-Si multilayer nanoshells that show better tunability of magnetic-based Fano resonances may provide the various applications ranging from novel optical devices to biological sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F (2010) Self-assembled plasmonic nanoparticle clusters. Science 328:1135–1138

    Article  CAS  Google Scholar 

  2. Liu S-D, Yang Y-B, Chen ZH, Wang W-J, Fei H-M, Zhang M-J, Wang Y-C (2013) Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry. J Phys Chem C 117:14218–14228

    Article  CAS  Google Scholar 

  3. Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 10:3184–3189

    Article  CAS  Google Scholar 

  4. Liu N, Hentschel M, Weiss T, Alivisatos AP, Giessen H (2011) Three-dimensional Plasmon rulers. Science 332:1407–1410

    Article  CAS  Google Scholar 

  5. Davis TJ, Hentschel M, Liu N, Giessen H (2012) Analytical model of the three-dimensional plasmon rulers. ACS Nano 6:1291–1298

    Article  CAS  Google Scholar 

  6. Shcherbakov MR, Le AT, Dubrovina N, Lupu A, Fedyanin AA (2015) Plasmon ruler with gold nanorod dimers: utilizing the second-order resonance. Opt Lett 40:1571–1574

    Article  CAS  Google Scholar 

  7. Christ A, Martin OJ, Ekinci Y, Gippius NA, Tikhodeev SG (2008) Symmetry breaking in a plasmonic metamaterial at optical wavelength. Nano Lett 8:2171–2175

    Article  CAS  Google Scholar 

  8. Wu C, Khanikaev AB, Adato R, Arju N, Yanik AA, Altug H, Shvets G (2012) Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater 11:69–75

    Article  CAS  Google Scholar 

  9. Gallinet B, Martin OJ (2011) Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials. Phys Rev B Condens Matter 83:1417–1425

    Article  Google Scholar 

  10. Liusman C, Li H, Lu G, Wu J, Boey F, Li S, Zhang H (2012) Surface-enhanced Raman scattering of Ag-Au nanodisk heterodimers. J Phys Chem C 116:10390–10395

    Article  CAS  Google Scholar 

  11. Sun B, Zhao L, Wang C, Yi X, Liu Z, Wang G, Li J (2014) Tunable Fano resonance in E-shape plasmonic nanocavities. J Phys Chem C 118:25124–25131

    Article  CAS  Google Scholar 

  12. Wang D, Zhu W, Best MD, Camden JP, Crozier KB (2013) Directional Raman scattering from single molecules in the feed gaps of optical antennas. Nano Lett 13:2194–2198

    Article  CAS  Google Scholar 

  13. Chang WS, Lassiter JB, Swanglap P, Sobhani H, Khatua S, Nordlander P, Halas NJ, Link S (2012) A Plasmonic Fano Switch. Nano Lett 12:4977–4982

    Article  CAS  Google Scholar 

  14. Zhao K, Huo Y, Liu T, Li J, He B, Zhao T, Liu L, Li Y (2015) Manipulation of electrical field enhancements and Fano resonances in Nanoellipsoid/ring plasmonic cavities. Plasmonics 10:1041–1048

    Article  Google Scholar 

  15. Amin M, Farhat M, Baǧcı H (2013) A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications. Sci Rep 3:1019–1026

    Google Scholar 

  16. Liu S-D, Yang Z, Liu R-P, Li X-Y (2011) High sensitivity localized surface Plasmon resonance sensing using a double split NanoRing cavity. J Phys Chem C 115:24469–24477

    Article  CAS  Google Scholar 

  17. O’Hara JF, Singh R, Brener I, Smirnova E, Han J, Taylor AJ, Zhang W (2008) Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Opt Express 16:1786–1795

    Article  Google Scholar 

  18. Zhang C, Chen B, Li Z (2010) Surface plasmon resonance in bimetallic core-shell nanoparticles. J Phys Chem C 119:16836–16845

    Article  Google Scholar 

  19. Ci X, Wu B, Liu Y, Chen G, Wu E, Zeng H (2014) Magnetic-based Fano resonance of hybrid silicon-gold nanocavities in the near-infrared region. Opt Express 22:23749–23758

    Article  CAS  Google Scholar 

  20. Yang ZJ, Zhang Z-S, Hao ZH, Wang QQ (2012) Strong bonding magnetic plasmon hybridizations in double split-ring resonators. Opt Express 37:3675–3677

    Google Scholar 

  21. Zhang Q, Wen X, Li G, Ruan Q, Wang J, Xiong Q (2013) Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities. ACS Nano 7:11071–11078

    Article  CAS  Google Scholar 

  22. Fan JA, Bao K, Wu C, Bao J, Bardhan R, Halas NJ, Manoharan VN, Shvets G, Nordlander P, Capasso F (2010) Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett 10:4680–4685

    Article  CAS  Google Scholar 

  23. Sheikholeslami SN, García-Etxarri A, Dionne JA (2011) Controlling the interplay of electric and magnetic modes via Fano-like Plasmon resonances. Nano Lett 11:3927–3934

    Article  CAS  Google Scholar 

  24. Nazir A, Panaro S, Proietti Zaccaria R, Liberale C, De Angelis F, Toma A (2014) Fano coil-type resonance for magnetic hot-spot generation. Nano Lett 14:3166–3171

    Article  CAS  Google Scholar 

  25. Cai D, Huang Y, Wang W, Ji W, Chen J, Chen Z, Liu S (2015) Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry. J Phys Chem C 119:4252–4260

    Article  CAS  Google Scholar 

  26. Filonov DS, Slobozhanyuk AP, Krasnok AE, Belov PA, Nenasheva EA, Hopkins B, Miroshnichenko AE, Kivshar YS (2014) Near-field mapping of Fano resonances in all-dielectric oligomers. Appl Phys Lett 104:226–234

    Article  Google Scholar 

  27. Miroshnichenko AE, Kivshar YS (2012) Fano resonances in all-dielectric oligomers. Nano Lett 12:6459–6463

    Article  CAS  Google Scholar 

  28. Yan J, Liu P, Lin Z, Wang H, Chen H, Wang C, Yang G (2015) Directional Fano resonance in a silicon nanosphere dimer. ACS Nano 9:2968–2980

    Article  CAS  Google Scholar 

  29. Rybin MV, Kapitanova PV, Filonov DS, Slobozhanyuk AP, Belov PA, Kivshar YS, Limonov MF (2013) Fano resonances in antennas: General control over radiation patterns. Phys Rev B 88:5199–5211

    Article  Google Scholar 

  30. Hopkins B, Poddubny AN, Miroshnichenko AE, Kivshar YS (2013) Revisiting the physics of Fano resonances for nanoparticle oligomers. Phys Rev A 88:3477–3488

    Article  Google Scholar 

  31. Chong KE, Hopkins B, Staude I, Miroshnichenko AE, Dominguez J, Decker M, Neshev DN, Brener I, Kivshar YS (2014) Observation of Fano resonances in all-dielectric nanoparticle oligomers. Small 10:1985–1990

    Article  CAS  Google Scholar 

  32. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  33. Palik ED (1985) Handbook of optical constants of solids. Academic Press 33:189

  34. Mukherjee S, Sobhani H, Lassiter JB, Bardhan R, Nordlander P, Halas NJ (2010) Fanoshells: nanoparticles with built-in Fano resonances. Nano Lett 10:2694–2701

    Article  CAS  Google Scholar 

  35. Wu DJ, Yu HQ, Yao J, Ma QY, Cheng Y, Liu XJ (2016) Efficient magnetic resonance amplification and near-field enhancement from gain-assisted silicon nanospheres and nanoshells. J Phys Chem C 120:13227–13233

    Article  CAS  Google Scholar 

  36. García-Etxarri A, Gómez-Medina R, Froufe-Pérez LS, López C, Chantada L, Scheffold F, Aizpurua J, Nieto-Vesperinas M, Sáenz JJ (2011) Strong magnetic response of submicron silicon particles in the infrared. Opt Express 19:4815–4826

    Article  Google Scholar 

  37. Schmidt MK, Esteban R, Sáenz J, Suárez-Lacalle I, Mackowski S, Aizpurua J (2012) Dielectric antennas-a suitable platform for controlling magnetic dipolar emission. Opt Express 20:13636–13650

    Article  CAS  Google Scholar 

  38. Geffrin JM, García-Cámara B, Gómez-Medina R, Albella P, Froufe-Pérez L, Eyraud C, Litman A, Vaillon R, González F, Nieto-Vesperinas M (2012) Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat Commun 3:542–555

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Basal Research Fund Project of the Liaoning Education Department (61020729) and College Students’ Innovative Training Program of Dalian Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wudeng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wang, Y., Shi, Y. et al. Magnetic-Based Double Fano Resonances in Au-SiO2-Si Multilayer Nanoshells. Plasmonics 12, 1537–1543 (2017). https://doi.org/10.1007/s11468-016-0416-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0416-x

Keywords

Navigation