Skip to main content
Log in

Manipulating Unidirectional Edge States Via Magnetic Plasmonic Gradient Metasurfaces

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We show that a strongly enhanced coupling of spatially propagating electromagnetic waves to self-guiding unidirectional edge states (UESs) can be achieved by engineering a magnetic plasmonic gradient metasurface (GMS) made of an array of ferrite rods. The conversion efficiency of the incident photons into self-guiding UESs exhibits a transition from zero on an ordinary periodic surface to nearly 80 % on a surface incorporating a GMS. The underlying physics lies in that the magnetic plasmonic GMS enables a direct excitation of the edge states due to the band-folding or momentum compensation effect, which are in turn transformed into the self-guiding UESs on the ordinary periodic surface. The excitation of the UESs can also be revealed by considering the partial wave scattering amplitudes of the constituent rods on the surface, which manifests a change from a standing wave in the region subject to an external illumination to a self-guiding wave propagating and confined on the surface, a signature of UESs. The magnetic plasmonic GMS can also be used to implement the unidirectional phase control of the UES and the nonreciprocal Goos-Hänchen shift as a consequence of the time-reversal-symmetry breaking nature of the system and the strong coupling of the incident wave. In addition, the unidirectional features are shown to be flexibly controlled by either tailoring the gradient or tuning the external magnetic field, adding considerably to the performance of the magnetic plasmonic GMS systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059

    Article  CAS  Google Scholar 

  2. John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58:2486

    Article  CAS  Google Scholar 

  3. Yablonovitch E (2001) Photonic crystals: semiconductors of light. Sci Am 285:47

    Article  CAS  Google Scholar 

  4. Joannopoulos JD, Meade RD, Winn JN (1995) Photonic Crystals. Princeton University Press, Princeton

    Google Scholar 

  5. Soukoulis CM (1993) Photonic band gaps and localization. Plenum, New York

    Book  Google Scholar 

  6. Soukoulis CM (1996) Photonic band gap materials. Klumer, Dordrecht

    Book  Google Scholar 

  7. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966

    Article  CAS  Google Scholar 

  8. Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77

    Article  CAS  Google Scholar 

  9. Zheludev NI (2010) The road ahead for metamaterials. Science 328:582

    Article  CAS  Google Scholar 

  10. Zheludev NI, Kivshar YS (2012) From metamaterials to metadevices. Nat Mater 11:917

    Article  CAS  Google Scholar 

  11. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780

    Article  CAS  Google Scholar 

  12. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189

    Article  CAS  Google Scholar 

  13. Soukoulis CM, Wegener M (2010) Optical metamaterials–more bulky and less lossy. Science 330:1633

    Article  CAS  Google Scholar 

  14. Kildishev AV, Boltasseva A, Shalaev VM (2013) Planar photonics with metasurfaces. Science 339:1232009

    Article  Google Scholar 

  15. Yu NF, Capasso F (2014) Flat optics with designer metasurfaces. Nat Mater 13:139

    Article  CAS  Google Scholar 

  16. Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, Gaburro Z (2011) Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334:333

    Article  CAS  Google Scholar 

  17. Walther B, Helgert C, Rockstuhl C, Setzpfandt F, Eilenberger F, Kley B, Lederer F, Tünnermann A, Pertsch T (2012) Spatial and spectral light shaping with metamaterials. Adv Mater 24:6300

    Article  CAS  Google Scholar 

  18. Genevet P, Yu NF, Aieta F, Lin J, Kats MA, Blanchard R, Scully MO, Gaburro Z, Capasso F (2012) Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl Phys Lett 100:013101

    Article  Google Scholar 

  19. Kang M, Feng TH, Wang HT, Li JS (2012) Wave front engineering from an array of thin aperture antennas. Opt Express 20: 15882

    Article  Google Scholar 

  20. Mei J, Wu Y (2014) Controllable transmission and total reflection through an impedance-matched acoustic metasurface. New J Phys 16:123007

    Article  Google Scholar 

  21. Huang LL, Chen XZ, Mühlenbernd H, Li GX, Bai BF, Tan QF, Jin GF, Zentgraf T, Zhang S (2012) Dispersionless phase discontinuities for controlling light propagation. Nano Lett 12:5750

    Article  CAS  Google Scholar 

  22. Yu NF, Aieta F, Genevet P, Kats MA, Gaburro Z, Capasso F (2012) A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett 12:6328

    Article  CAS  Google Scholar 

  23. Chen WT, Yang KY, Wang CM, Huang YW, Sun G, Chiang ID, Liao CY, Hsu WL, Lin HT, Sun SL, Zhoul, Liu AQ, Tsai DP (2014) High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 14:225

    Article  Google Scholar 

  24. Ni XJ, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM (2012) Broadband light bending with plasmonic nanoantennas. Science 335:427

    Article  CAS  Google Scholar 

  25. Sun SL, Yang KY, Wang CM, Juan TK, Chen WT, Liao CY, He Q, Xiao SY, Kung WT, Guo GY, Zhou L, Tsai DP (2012) High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 12:6223

    Article  CAS  Google Scholar 

  26. Aieta F, Genevet P, Yu NF, Kats MA, Gaburro Z, Capasso F (2012) Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano Lett 12:1702

    Article  CAS  Google Scholar 

  27. Monticone F, Estakhri NM, Alù A (2013) Full control of nanoscale optical transmission with a composite metascreen. Phys Rev Lett 110:203903

    Article  Google Scholar 

  28. Estakhri NM, Alù A (2014) Manipulating optical reflections using engineered nanoscale metasurfaces. Phys Rev B 89:235419

    Article  Google Scholar 

  29. Aieta F, Genevet P, Kats MA, Yu NF, Blanchard R, Gaburro Z, Capasso F (2012) Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 12:4932

    Article  CAS  Google Scholar 

  30. Chen XZ, Huang LL, Mühlenbernd H, Li GX, Bai BF, Tan QF, Jin GF, Qiu CW, Zhang S, Zentgraf T (2012) Dual-polarity plasmonic metalens for visible light. Nat Commun 3:1198

    Article  Google Scholar 

  31. Pors A, Nielsen MG, Eriksen RL, Bozhevolnyi SI (2013) Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett 13:829

    Article  CAS  Google Scholar 

  32. Pfeiffer C, Grbic A (2013) Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett 110:197401

    Article  Google Scholar 

  33. Shitrit N, Bretner I, Gorodetski Y, Kleiner V, Hasman E (2011) Optical spin hall effects in plasmonic chains. Nano Lett 11:2038

    Article  CAS  Google Scholar 

  34. Yin XB, Ye ZL, Rho J, Wang Y, Zhang X (2013) Photonic spin hall effect at metasurfaces. Science 339:1405

    Article  CAS  Google Scholar 

  35. Sun SL, He Q, Xiao SY, Xu Q, Li X, Zhou L (2012) Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater 11:426

    Article  CAS  Google Scholar 

  36. Dolev I, Epstein I, Arie A (2012) Surface-plasmon holographic beam shaping. Phys Rev Lett 109:203903

    Article  Google Scholar 

  37. Genevet P, Lin J, Kats MA, Capasso F (2012) Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nat Commun 3:1278

    Article  Google Scholar 

  38. Wang Z, Chong YD, Joannopoulos JD (2008) Soljačić M Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys Rev Lett 100:013905

    Article  Google Scholar 

  39. Wang Z, Chong YD, Joannopoulos JD (2009) Soljačić M Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461:772

    Article  CAS  Google Scholar 

  40. Liu SY, Lu WL, Lin ZF, Chui ST (2010) Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials. Appl Phys Lett 97:201113

    Article  Google Scholar 

  41. Liu SY, Lu WL, Lin ZF, Chui ST (2011) Molding reflection from metamaterials based on magnetic surface plasmons. Phys Rev B 84:045425

    Article  Google Scholar 

  42. Rechtsman MC, Zeuner JM, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A (2013) Photonic Floquet topological insulators. Nature 496:196

    Article  CAS  Google Scholar 

  43. Hafezi M, Mittal S, Fan J, Migdall A, Taylor JM (2013) Imaging topological edge states in silicon photonics. Nat Photon 7:1001

    Article  CAS  Google Scholar 

  44. Chin JY, Steinle T, Wehlus T, Dregely D, Weiss T, Belotelov VI, Stritzker B, Giessen H (2013) Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation. Nat Commun 4:1599

    Article  Google Scholar 

  45. Davoyan AR, Engheta N (2013) Nonreciprocal rotating power flow within plasmonic nanostructures. Phys Rev Lett 111:047401

    Article  Google Scholar 

  46. Pozar DM (2005) Microwave Engineering, 3rd Ed. Wiley, New York, pp 446–447

    Google Scholar 

  47. Felbacq D, Tayeb G, Maystre D (1994) Scattering by a random set of parallel cylinders. J Opt Soc Am A 11:2526

    Article  Google Scholar 

  48. Liu SY, Lin ZF (2006) Opening up complete photonic bandgaps in three-dimensional photonic crystals consisting of biaxial dielectric spheres. Phys Rev E 73:066609

    Article  Google Scholar 

  49. Wu Z, Guo L (1998) Electromagnetic scattering from a multilayered cylinder arbitrarily located in a gaussian beam, a new recursive algorithms. Prog Electromagn Res 18:317

    Article  Google Scholar 

  50. Kane CL, Mele EJ (2005) Quantum spin hall effect in graphene. Phys Rev Lett 95:226801

    Article  CAS  Google Scholar 

  51. Fu JX, Liu RJ, Li ZY (2010) Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces. Appl Phys Lett 97:041112

    Article  Google Scholar 

  52. Ao XY, Lin ZF, Chan CT (2009) One-way edge mode in a magneto-optical honeycomb photonic crystal. Phys Rev B 80:033105

    Article  Google Scholar 

  53. Poo Y, Wu RX, Lin ZF, Yang Y, Chan CT (2011) Experimental realization of self-guiding unidirectional electromagnetic edge states. Phys Rev Lett 106:093903

    Article  Google Scholar 

  54. Liu SY, Du JJ, Lin ZF, Wu RX, Chui ST (2008) Formation of robust and completely tunable resonant photonic band gaps. Phys Rev B 78:155101

    Article  Google Scholar 

  55. Chui ST, Liu SY, Lin ZF (2013) Multiple flat photonic bands with finite Chern numbers. Phys Rev E 88(R): 031201

    Article  CAS  Google Scholar 

  56. Chui ST, Liu SY, Lin ZF (2010) Reflected wave of finite circulation from magnetic photonic crystals. J Phys Condens Matter 22:182201

    Article  CAS  Google Scholar 

  57. Khanikaev AB, Mousavi SH, Shvets G, Kivshar YS (2010) One-way extraordinary optical transmission and nonreciprocal spoof plasmons. Phys Rev Lett 105: 126804

    Article  Google Scholar 

  58. Yu JJ, Chen HJ, Wu YB, Liu SY (2012) Magnetically manipulable perfect unidirectional absorber based on nonreciprocal magnetic surface plasmon. EPL 100:47007

    Article  Google Scholar 

  59. Chen HJ, Liu SY (2012) Manipulating electromagnetic wave with the magnetic surface plasmon based metamaterials. Appl Phys A 107:363

    Article  CAS  Google Scholar 

  60. Lian J, Fu JX, Gan L, Li ZY (2012) Robust and disorder-immune magnetically tunable one-way waveguides in a gyromagnetic photonic crystal. Phys Rev B 85:125108

    Article  Google Scholar 

  61. Shen J, Liu SY, Zhang HW, Chui ST, Lin ZF, Fan X, Kou XM, Lu Q, Xiao JQ (2012) Robust and disorder-immune magnetically tunable one-way waveguides in a gyromagnetic photonic crystal. Plasmonics 7:287

    Article  CAS  Google Scholar 

  62. Chui ST, Lin ZF (2014) Entangled transverse optical vortex. Opt Lett 39:5732

    Article  CAS  Google Scholar 

  63. Chui ST, Lin ZF (2014) Spin plasmonics in magnetism. Chin Phys B 23:117802

    Article  Google Scholar 

  64. Yu XN, Chen HJ, Lin HX, Zhou JL, Yu JJ, Qian CX, Liu SY (2014) Continuously tuning effective refractive index based on thermally controllable magnetic metamaterials. Opt Lett 39:4643

    Article  Google Scholar 

  65. Chen SW, Du JJ, Liu SY, Lin ZF, Chui ST (2008) Focusing the electromagnetic wave with a magnetic field. Opt Lett 33:2476

    Article  Google Scholar 

  66. Chen SW, Du JJ, Liu SY, Lin ZF, Chui ST (2008) Molding the flow of electromagnetic waves and creating a mirage with a magnetic field. Phys Rev A 78:043803

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the China 973 Projects (Nos. 2011CB922004 and 2013CB632701), National Natural Science Foundation of China (Nos. 11174059, 11274277, 11404394, 11574055, and 11574275), Hong Kong Research Grants Council Grant HKUST2/CRF/11G, Zhejiang Provincial Natural Science Foundation of China (LR16A040001 and R12B040001), and the open project of State Key Laboratory of Surface Physics (KF2013_6) in Fudan University. JJL is supported by National Science Fund for Talent Training in Basic Science (No. J1103204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Lu, W., Li, J. et al. Manipulating Unidirectional Edge States Via Magnetic Plasmonic Gradient Metasurfaces. Plasmonics 12, 1079–1090 (2017). https://doi.org/10.1007/s11468-016-0361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0361-8

Keywords

Navigation