Skip to main content
Log in

Gold-Graphene Core-Shell Nanostructure Surface Plasmon Sensors

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Localized surface plasmon resonance sensors in nanostructures have wide applications from medical diagnostics to environmental monitoring. The quality and performance of a sensor is normally assessed by its sensitivity and figure of merit (FOM). Generally, localized surface plasmon sensors suffer low FOM due to strong radiative damping of localized surface plasmon and hence broad resonance peaks compared to that one in propagating surface plasmon resonance sensors. In this work, a 2D array of gold-graphene spherical core-shell nanostructure on a quartz substrate was introduced as a liquid sensor with FOM and sensitivity as large as 102.6 and 350 nm/RIU, respectively, in a gold-graphene hybrid nanostructure. The results showed a significant improvement in the FOM compared to previous works and common surface plasmon resonance refractive index surface plasmon sensors such as nanohole arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brolo AG (2012) Plasmonics for future biosensors. Nat Photonics 6(11):709–713

    Article  CAS  Google Scholar 

  2. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  CAS  PubMed  Google Scholar 

  3. Toma M, Cho K, Wood JB, Corn RM (2013) Gold nanoring arrays for near infrared plasmonic biosensing. Plasmonics 9(4):765–772

    Article  CAS  Google Scholar 

  4. Liang Y, Lu M, Chu S, Li L, Peng W (2015) Tunable plasmonic resonances in the hexagonal nanoarrays of annular aperture for biosensing. Plasmonics 11(1):205–212

    Article  CAS  Google Scholar 

  5. Sherry LJ, Chang SH, Schatz GC, Duyne RPV (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038

    Article  CAS  PubMed  Google Scholar 

  6. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857

    Article  CAS  PubMed  Google Scholar 

  7. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Duyne RPV (2008) Biosensing with plasmonic nanosensors. Nat Mater 7

  8. Bukasov R, Shumaker-Parry JS (2007) Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett 7(4)

  9. Wang H, Brandl DW, Le F, Nordlander P, Halas NJ (2006) Nanorice: a hybrid plasmonic nanostructure. Nano Lett 6:827–832

    Article  CAS  PubMed  Google Scholar 

  10. Svedendahl M, Chen S, Dmitriev A, Ka M (2009) Refractometric sensing using propagating versus localized surface plasmons: a direct comparison. Nano Lett 9(12):4428–4433

    Article  CAS  PubMed  Google Scholar 

  11. Shen Y, Zhou J, Liu T, Tao Y, Jiang R, Liu M, Xiao G, Zhu J, Zhou ZK, Wang X, Jin C, Wang J (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 4:2381

    Article  PubMed  Google Scholar 

  12. Y.A.K. Imogen M. Pryce, Koray Aydin, and Harry A. Atwater, Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing. ACS Nano, 2011. 5(10): 8167–8174.

  13. Verellen N, Van Dorpe P, Huang C, Lodewijks K, Vandenbosch GA, Lagae L, Moshchalkov VV (2011) Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett 11(2):391–397

    Article  CAS  PubMed  Google Scholar 

  14. Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 10(8):3184–3189

    Article  CAS  PubMed  Google Scholar 

  15. Auguie B, Barnes WL (2008) Collective resonances in gold nanoparticle arrays. Phys Rev Lett 101(14):143902

    Article  CAS  PubMed  Google Scholar 

  16. Kravets VG, Schedin F, Grigorenko AN (2008) Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys Rev Lett 101(8):087403

    Article  CAS  PubMed  Google Scholar 

  17. Vecchi G, Giannini V, Gómez Rivas J (2009) Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas. Phys Rev B 80(20):201401

    Article  CAS  Google Scholar 

  18. Zhou W, Odom TW (2011) Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nat Nanotechnol 6(7):423–427

    Article  CAS  PubMed  Google Scholar 

  19. Hicks EM, Zou S, Schatz GC, Spears KG, Duyne RPV (2005) Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett 5(6):1065–1070

    Article  CAS  PubMed  Google Scholar 

  20. Wang D, Yang A, Hryn AJ, Schatz GC, Odom TW (2015) Superlattice plasmons in hierarchical Au nanoparticle arrays. ACS Photonics 2(12):1789–1794

    Article  CAS  Google Scholar 

  21. Kreibig U, Vollmer M (1995) Optical properties of metal clusters, vol 25. Springer, New York

    Google Scholar 

  22. Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19(3):409–453

    Article  CAS  Google Scholar 

  23. Yan F, Xia H, Avouris P (2013) The interaction of light and graphene: basics, devices, and applications. Proc IEEE 101:1717–1731

    Article  CAS  Google Scholar 

  24. Navas MP, Soni RK (2015) Laser-generated bimetallic Ag-Au and Ag-Cu core-shell nanoparticles for refractive index sensing. Plasmonics 10(3):681–690

    Article  CAS  Google Scholar 

  25. Gan X, Mak KF, Gao Y, You Y, Hatami F, Hone J, Heinz TF, Englund D (2012) Strong enhancement of light–matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Lett 12(11):5626–5631

    Article  CAS  PubMed  Google Scholar 

  26. Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6(10):630–634

    Article  CAS  PubMed  Google Scholar 

  27. Alaee R, Farhat M, Rockstuhl C, Lederer F (2012) A perfect absorber made of a graphene micro-ribbon metamaterial. Opt Express 20(27):28017–28024

    Article  CAS  PubMed  Google Scholar 

  28. Nikitin AY, Guinea F, Garcia-Vidal FJ, Martin-Moreno L (2012) Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons. Phys Rev B 85(8):081405

    Article  CAS  Google Scholar 

  29. Thongrattanasiri S, Koppens FH, Garcia de Abajo FJ (2012) Complete optical absorption in periodically patterned graphene. Phys Rev Lett 108(4):047401

    Article  CAS  PubMed  Google Scholar 

  30. Zhao B, Zhao JM, Zhang ZM (2014) Enhancement of near-infrared absorption in graphene with metal gratings. Appl Phys Lett 105(3):031905

    Article  CAS  Google Scholar 

  31. Liu Y, Chadha A, Zhao D, Piper JR, Jia Y, Shuai Y, Menon L, Yang H, Ma Z, Fan S, Xia F, Zhou W (2014) Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling. Appl Phys Lett 105(18):181105

    Article  CAS  Google Scholar 

  32. Maurer T, Nicolas R, Lévêque G, Subramanian P, Proust J, Béal J, Schuermans S, Vilcot JP, Herro Z, Kazan M, Plain J, Boukherroub R, Akjouj A, Djafari-Rouhani B, Adam PM, Szunerits S (2013) Enhancing LSPR sensitivity of Au gratings through graphene coupling to Au film. Plasmonics 9(3):507–512

    Article  CAS  Google Scholar 

  33. Martinsson E, Sepulveda B, Chen P, Elfwing A, Liedberg B, Aili D (2013) Optimizing the refractive index sensitivity of plasmonically coupled gold nanoparticles. Plasmonics 9(4):773–780

    Article  CAS  Google Scholar 

  34. Martinsson E, Shahjamali MM, Enander K, Boey F, Xue C, Aili D, Liedberg B (2013) Local refractive index sensing based on edge gold-coated silver nanoprisms. J Phys Chem C 117(44):23148–23154

    Article  CAS  Google Scholar 

  35. Mayer KM, Hao F, Lee S, Nordlander P, Hafner JH (2010) A single molecule immunoassay by localized surface plasmon resonance. Nanotechnology 21(25):255503

    Article  CAS  PubMed  Google Scholar 

  36. Larsson EM, Alegret J, Käll M, Sutherland DS (2007) Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7(5):1256–1263

    Article  CAS  PubMed  Google Scholar 

  37. Irannejad M, Cui B, Yavuz M (2015) Optical properties and liquid sensitivity of Au-SiO2-Au nanobelt structure. Plasmonics 11(1):1–9

    Article  CAS  Google Scholar 

  38. Yang B, Wu T, Yang Y, Zhang X (2015) Tunable subwavelength strong absorption by graphene wrapped dielectric particles. J Opt 17(3):035002

    Article  CAS  Google Scholar 

  39. Christensen T, Jauho A-P, Wubs M, Mortensen NA (2015) Localized plasmons in graphene-coated nanospheres. Phys Rev B 91(12):125414

    Article  CAS  Google Scholar 

  40. Li Q, Zhang Z (2016) Bonding and anti-bonding modes of plasmon coupling effects in TiO2-Ag core-shell dimers. Sci Rep 6:19433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sreejith S, Joseph J, Nguyen KT, Murukeshan VM, Lye SW, Zhao Y (2015) Graphene oxide wrapping of gold–silica core–shell nanohybrids for photoacoustic signal generation and bimodal imaging. ChemNanoMat 1(1):39–45

    Article  CAS  Google Scholar 

  42. Han TH, Lee WJ, Lee DH, Kim JE, Choi EY, Kim SO (2010) Peptide/graphene hybrid assembly into core/shell nanowires. Adv Mater 22(18):2060–2064

    Article  CAS  PubMed  Google Scholar 

  43. Staudinger C, Borisov SM (2015) Long-wavelength analyte-sensitive luminescent probes and optical (bio) sensors. Methods Appl Fluoresc 3(4):042005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li J, Chen K, Liu H, Cheng K, Yang M, Zhang J, Cheng JD, Zhang Y, Cheng Z (2012) Activatable near-infrared fluorescent probe for in vivo imaging of fibroblast activation protein-alpha. Bioconjug Chem 23(8):1704–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blake P, Ahn W, Roper DK (2010) Enhanced uniformity in arrays of electroless plated spherical gold nanoparticles using tin presensitization. Langmuir 26(3):1533–1538

    Article  CAS  PubMed  Google Scholar 

  46. Shim J, Yun JM, Yun T, Kim P, Lee KE, Lee WJ, Ryoo R, Pine DJ, Yi G-R, Kim SO (2014) Two-minute assembly of pristine large-area graphene based films. Nano Lett 14(3):1388–1393

    Article  CAS  PubMed  Google Scholar 

  47. Irannejad M, Alyalak W, Burzhuev S, Brzezinski A, Bo MCY (2015) Engineering of Bi−/mono-layer graphene film using reactive ion etching. Trans Electr Electron Mater 16(4):169–172

    Article  Google Scholar 

  48. Campos LC, Manfrinato VR, Sanchez-Yamagishi JD, Kong J, Jarillo-Herrero P (2009) Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett 9(7):2600–2604

    Article  CAS  PubMed  Google Scholar 

  49. Wannemacher R (2001) Plasmon supported-transmission of light through nanometric holes in metallic thin films. Opt Commun 195:107–118

    Article  CAS  Google Scholar 

  50. Cattoni A, Ghenuche P, Haghiri-Gosnet AM, Decanini D, Chen J, Pelouard JL, Collin S (2011) Lambda(3)/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography. Nano Lett 11(9):3557–3563

    Article  CAS  PubMed  Google Scholar 

  51. Francs GC d, Molenda D, Fischer UC, Naber A (2005) Enhanced light confinement in a triangular aperture: experimental evidence and numerical calculations. Phys Rev B 72(16)

  52. Irannejad M, Cui B (2013) Effects of refractive index variations on the optical transmittance spectral properties of the nano-hole arrays. Plasmonics 8(2):1245–1251

    Article  CAS  Google Scholar 

  53. Irannejad M, Yavuz M, Cui B (2013) Finite difference time domain study of light transmission through multihole nanostructures in metallic film. Photonics Res 1(4):154

    Article  CAS  Google Scholar 

  54. Irannejad M, Zhang J, Yavuz M, Cui B (2013) Numerical study of optical behavior of nano-hole array with non-vertical sidewall profile. Plasmonics 9(3):537–544

    Article  CAS  Google Scholar 

  55. Haynes WM (2014) CRC handbook of chemistry and physics. CRC Press, Boca Raton, Fl

    Google Scholar 

  56. Falkovsky LA (2008) Optical properties of graphene and IV–VI semiconductors. Physics-Uspekhi 9(51):887–898

    Article  CAS  Google Scholar 

  57. Mesh refinement options 2015 Available from: https://kb.lumerical.com/en/index.html?ref_sim_obj_mesh_refinement_options.html.

  58. Chen Y, Wu H, Li Z, Wang P, Yang L, Fang Y (2012) The study of surface plasmon in Au/Ag core/shell compound nanoparticles. Plasmonics 7(3):509–513

    Article  CAS  Google Scholar 

  59. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures. Science 302

  60. Radloff C, Halas NJ (2004) Plasmonic properties of concentric nanoshells. Nano Lett 4(7):1323–1327

    Article  CAS  Google Scholar 

  61. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1:641–648

    Article  CAS  Google Scholar 

  62. S.A. Maier, Plasmonics: fundamentals and applications. 2007: Springer Science & Business Media.

  63. Kofke MJ, Waldeck DH, Walker GC (2010) Composite nanoparticle nanoslit arrays: a novel platform for LSPR mediated subwavelength optical transmission. Opt Express 18(8):7705–7713

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

RA acknowledges Taibah University, Saudi Arabia, for the financial support. RA, MI, and MY would like to acknowledge the National Science and Engineering Research Council of Canada (NSERC) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Irannejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharbi, R., Irannejad, M. & Yavuz, M. Gold-Graphene Core-Shell Nanostructure Surface Plasmon Sensors. Plasmonics 12, 783–794 (2017). https://doi.org/10.1007/s11468-016-0325-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0325-z

Keywords

Navigation