Skip to main content
Log in

Numerical Study of Optical Behavior of Nano-Hole Array with Non-Vertical Sidewall Profile

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Due to the limit of nanofabrication methods of the nano-hole array (i.e., focused ion beam, nanoimprint/electron beam lithography, and metal film evaporation on top of the free standing membrane), the nano-hole arrays patterned in a noble metal film always has a non-vertical sidewall profile. In this work, the optical transmittance of the non-vertical profile nano-hole array with different tapered angle (α) and structural periodicity (P) was numerically investigated. The optimum tapered angle in case of positive profile of the nano-hole arrays was found as 10° and 12° at structural period of 450 and 500 nm, respectively. However, in case of negative profile, the optimum tapered angle of the nano-hole array was obtained as 4° at both structural period of 450 and 500 nm. The first and the second resonance modes of the nano-hole arrays with negative profile were shown a blueshift of 16 and 9 nm on increasing the tapered angle from 0° to 16° at structural period of 450 and 500 nm, respectively. It was also found that nano-hole arrays with positive tapered profile result in higher transmission than the negative profile one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668):667–669

    Article  CAS  Google Scholar 

  2. Vial A, Laroche T, Dridi M, Le Cunff L (2011) A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method. Appl Phys A 103(3):849–853. doi:10.1007/s00339-010-6224-9

    Article  CAS  Google Scholar 

  3. Hess O, Pendry JB, Maier SA, Oulton RF, Hamm JM, Tsakmakidis KL (2012) Active nanoplasmonic metamaterials. Nat Mater 11(7):573–584

    Article  CAS  Google Scholar 

  4. Tang ZH, Peng RW, Wang Z, Wu X, Bao YJ, Wang QJ, Zhang ZJ, Sun WH, Wang M (2007) Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays. Phys Rev B 76(19):195405

    Article  Google Scholar 

  5. Vial A, Laroche T (2007) Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method. J Phys D Appl Phys 40:7152–7158

    Article  CAS  Google Scholar 

  6. Xiao S, Mortensen NA, Qiu M (2007) Enhanced transmission through arrays of subwavelength holes in gold films coated by a finite dielectric layer. J Eur Opt Soc-Rapid Publ 2:07009

    Article  Google Scholar 

  7. Guo J, Adato R (2006) Extended long range plasmon waves in finite thickness metal film and layered dielectric materials. Opt Express 14(25):12409–12418

    Article  Google Scholar 

  8. Coe JV, Heer JM, Teeters-Kennedy S, Tian H, Rodriguez KR (2008) Extraordinary transmission of metal films with arrays of subwavelength holes. Annu Rev Phys Chem 59(1):179–202. doi:10.1146/annurev.physchem.59.032607.093703

    Article  CAS  Google Scholar 

  9. García de Abajo FJ (2007) Colloquium: light scattering by particle and hole arrays. Rev Mod Phys 79(4):1267–1290

    Article  Google Scholar 

  10. Garcia-Vidal FJ, Martin-Moreno L, Ebbesen TW, Kuipers L (2010) Light passing through subwavelength apertures. Rev Mod Phys 82(1):729–787

    Article  Google Scholar 

  11. Liu H, Lalanne P (2008) Microscopic theory of the extraordinary optical transmission. Nature 52(7188):728–31. doi:10.1038/nature06762

    Article  Google Scholar 

  12. Gordon R (2008) Surface plasmon nanophotonics: a tutorial. Nanotechnol Mag IEEE 2(3):12–18. doi:10.1109/mnano.2008.931481

    Article  Google Scholar 

  13. Lovera P, Jones D, Corbet B, O’Riordan A (2012) Polarization tunable transmission through plasmonic arrays of elliptical nanopores. Opt Express 20(23):25325–25332

    Article  CAS  Google Scholar 

  14. Anguita J, Alvaro R, Espinosa F (2012) A new experimental method to obtain the ion beam profile of focused ion beam nanotechnology systems. Int J Mech Eng Mechatron 1(1):61–65

    Google Scholar 

  15. Jung WK, Byun KM (2011) Fabrication of nanoscale plasmonic structures and their applications to photonic devices and biosensors. Biomed Eng Lett 1:153–162

    Article  Google Scholar 

  16. Takeda S, Koto K, Iijima S, Ichihashi T (1997) Nanoholes on silicon surface created by electron irradiation under ultrahigh vacuum environment. Phys Rev Lett 79(16):2994–2997

    Article  CAS  Google Scholar 

  17. Bysakh S, Shimojo M, Mitsuishi K, Furuya K (2004) Mechanisms of nano-hole drilling due to nano-probe intense electron beam irradiation on a stainless steel. J Vac Sci Technol B: Microelectron Nanomet Struct 22(6):2620–2627

    Article  CAS  Google Scholar 

  18. Wu M-Y, Krapf D, Zandbergen M, Zandbergen H, Batson PE (2005) Formation of nanopores in a SiN/SiO[sub 2] membrane with an electron beam. Appl Phys Lett 87(11):113106–113103

    Article  Google Scholar 

  19. Stockman MI (2004) Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 93(13):137404

    Article  Google Scholar 

  20. Bozhevolnyi SI, Volkov VS, Devaux E, Ebbesen TW (2005) Channel plasmon-polariton guiding by subwavelength metal grooves. Phys Rev Lett 95(4):046802

    Article  Google Scholar 

  21. Bozhevolnyi SI (2006) Effective-index modeling of channel plasmon polaritons. Opt Express 14(20):9467–9476

    Article  Google Scholar 

  22. Gramotnev DK, Pile DFP, Vogel MW, Zhang X (2007) Local electric field enhancement during nanofocusing of plasmons by a tapered gap. Phys Rev B 75(3):035431

    Article  Google Scholar 

  23. Shahmansouri A, Rashidian B (2013) Enhanced optical transmission through metallic holes array: role of the polarization in SPP excitation. Plasmonics 8(2):403–409. doi:10.1007/s11468-012-9404-y

    Article  CAS  Google Scholar 

  24. Søndergaard T, Bozhevolnyi SI, Beermann J, Novikov SM, Devaux E, Ebbesen TW (2012) Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders. J Opt Soc Am B 29(1):130–137

    Article  Google Scholar 

  25. Rakic AD, Djurisic AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37(22):5271–5283

    Article  CAS  Google Scholar 

  26. Lumerical, Symmetric and anti-symmetric boundary condition. http://docs.lumerical.com/en/fdtd/user_guide_symmetric_anti_symmetric.html.

  27. Lumerical, Mesh refinement options. http://docs.lumerical.com/en/fdtd/user_guide_mesh_refinement_options.html.

  28. Lumerical, Mesh refinement. http://docs.lumerical.com/en/fdtd/user_guide_mesh_refinement.html.

  29. Gao H, Henzie J, Odom TW (2006) Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. Nano Lett 6(9):2104–2108. doi:10.1021/nl061670r

    Article  CAS  Google Scholar 

  30. Irannejad M, Cui B (2013) Effects of refractive index variations on the optical transmittance spectral properties of the nano-hole arrays. Plasmonics 8(2):1245–1251. doi:10.1007/s11468-013-9540-z

    Article  CAS  Google Scholar 

  31. Ghaemi HF, Thio T, Grupp DE, Ebbesen TW, Lezec HJ (1998) Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B 58(11):6779–6782

    Article  CAS  Google Scholar 

  32. Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82(3):2257–2298

    Article  CAS  Google Scholar 

  33. Francescato Y, Giannini V, Maier SA (2012) Plasmonic systems unveiled by fano resonances. ACS Nano 6(2):1830–1838. doi:10.1021/nn2050533

    Article  CAS  Google Scholar 

  34. Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9(9):707–715

    Article  Google Scholar 

  35. Rahmani M, Lukiyanchuk B, Ng B, Tavakkoli KGA, Liew YF, Hong MH (2011) Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers. Opt Express 19(6):4949–4956

    Article  CAS  Google Scholar 

  36. Gao H, McMahon JM, Lee MH, Henzie J, Gray SK, Schatz GC, Odom TW (2009) Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays. Opt Express 17(4):2334–2340

    Article  CAS  Google Scholar 

  37. Bouhelier A, Renger J, Beversluis MR, Novotny L (2003) Plasmon-coupled tip-enhanced near-field optical microscopy. J Microsc 210(3):220–224. doi:10.1046/j.1365-2818.2003.01108.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Science and Engineering Research Council of Canada (NSERC) for their financial support (Ref# EGP 445290–12). The authors acknowledge Prof. Simarjeet Saini and Mr. Jaspreet Walia for transmission measurement of the tapered NHAs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Irannejad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irannejad, M., Zhang, J., Yavuz, M. et al. Numerical Study of Optical Behavior of Nano-Hole Array with Non-Vertical Sidewall Profile. Plasmonics 9, 537–544 (2014). https://doi.org/10.1007/s11468-013-9656-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9656-1

Keyword

Navigation