Skip to main content
Log in

High-Efficiency Cross Polarization Converters by Plasmonic Metasurface

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We have proposed a carefully designed metasurface constructed by the elongated apertures in gold film. This metasurface structure can support only single anomalous refractions for both circular polarization (CP) and linear polarization (LP) incidence, which is also following the generalized Snell’s law, whereas the normal refraction can be completely suppressed nearly. Furthermore, the circularly polarized light converted to cross-polarized light and the linearly polarized light decomposed into two CP states with opposite transmission angle after passing through the metasurface with a high conversion efficiency of 87.5 %. The concept of single anomalous refraction can be exploited for creating high-performance wave plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966

    Article  CAS  Google Scholar 

  2. Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77–79

    Article  CAS  Google Scholar 

  3. Shalaev VM, Cai W, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, Kildishev AV (2005) Negative index of refraction in optical metamaterials. Opt Lett 30:3356–3358

    Article  Google Scholar 

  4. Huang X, Lai Y, Hang ZH, Zheng H, Chan CT (2011) Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat Mater 10:582–586

    Article  CAS  Google Scholar 

  5. Fang N, Lee H, Sun C, Zhang X (2005) Sub–diffraction-limited optical imaging with a silver superlens. Science 308:534–537

    Article  CAS  Google Scholar 

  6. Liu Z, Lee H, Xiong Y, Sun C, Zhang X (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315:1686–1686

    Article  CAS  Google Scholar 

  7. Larouche S, Tsai YJ, Tyler T, Jokerst NM, Smith DR (2012) Infrared metamaterial phase holograms. Nat Mater 11:450–454

    Article  CAS  Google Scholar 

  8. Pors A, Nielsen MG, Bozhevolnyi SI (2013) Broadband plasmonic half-wave plates in reflection. Opt Lett 38:513–515

    Article  Google Scholar 

  9. Yin X, Ye Z, Rho J, Wang Y, Zhang X (2013) Photonic spin Hall effect at metasurfaces. Science 339:1405–1407

    Article  CAS  Google Scholar 

  10. Shitrit N, Yulevich I, Maguid E, Ozeri D, Veksler D, Kleiner V, Hasman E (2013) Spin-optical metamaterial route to spin-controlled photonics. Science 340:724–726

    Article  CAS  Google Scholar 

  11. Genevet P, Yu N, Aieta F, Lin J, Kats MA, Blanchard R, Scully MO, Gaburro Z, Capasso F (2012) Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl Phys Lett 100:013101

  12. Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, Gaburro Z (2011) Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334:333–337

    Article  CAS  Google Scholar 

  13. Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L (2012) Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater 11:426–431

    Article  CAS  Google Scholar 

  14. Li R, Guo Z, Wang W, Zhang J, Zhang A, Liu J, Qu S, Gao J (2014) Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators. Opt Express 22:27968–27975

  15. Ding J, Arigong B, Ren H, Shao J, Zhou M, Lin Y, Zhang H (2014) Mid-Infrared Tunable Dual-Frequency Cross Polarization Converters Using Graphene-Based L-Shaped Nanoslot Array. Plasmon 1–6

  16. Jamali AA, Witzigmann B (2014) Plasmonic perfect absorbers for biosensing applications. Plasmonics 9:1265–1270

    Article  CAS  Google Scholar 

  17. Zhang X, Tian Z, Yue W, Gu J, Zhang S, Han J, Zhang W (2013) Broadband terahertz wave deflection based on C‐shape complex metamaterials with phase discontinuities. Adv Mater 25:4567–4572

    Article  CAS  Google Scholar 

  18. Huang L, Chen X, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S (2012) Dispersionless phase discontinuities for controlling light propagation. Nano Lett 12:5750–5755

  19. Huang L, Chen X, Mühlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah KW, Qiu C, Li J, Zentgraf T, Zhang S (2013) Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 4

  20. Chen X, Huang L, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Qiu C, Zhang S, Zentgraf T (2012) Dual-polarity plasmonic metalens for visible light. Nat Commun 3:1198

  21. Sun S, Yang KY, Wang CM, Juan TK, Chen WT, Liao CY, He Q, Xiao S, Kung W, Guo G, Zhou L,  Tsai DP (2012) High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett 12:6223–6229

  22. Grady NK, Heyes JE, Chowdhury DR, Zeng Y, Reiten MT, Azad AK, Taylor AJ, Dalvit DAR, Chen HT (2013) Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340:1304–1307

  23. Hasman E, Kleiner V, Biener G, Niv A (2003) Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Appl Phys Lett 82:328–330

    Article  CAS  Google Scholar 

  24. Ni X, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM (2012) Broadband light bending with plasmonic nanoantennas. Science 335:427–427

    Article  CAS  Google Scholar 

  25. Aieta F, Genevet P, Yu N, Kats MA, Gaburro Z, Capasso F (2012) Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano Lett 12:1702–1706

    Article  CAS  Google Scholar 

  26. Palik ED (1985) “gold (Au)”, in Handbook of optical constants of solids, Academic Press Handbook Series. Academic, New York

    Google Scholar 

  27. Shaltout A, Liu J, Shalaev VM, Kildishev AV (2014) Optically Active Metasurface with Non-Chiral Plasmonic Nanoantennas. Nano Lett 14:4426–4431

    Article  CAS  Google Scholar 

  28. Huang L, Chen X, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S (2013) Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light: Sci Appl 2:e70

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports for this work from the Foundation of Hefei University of Technology of China (HFUT. 407–037026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyi Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Guo, Z., Wang, W. et al. High-Efficiency Cross Polarization Converters by Plasmonic Metasurface. Plasmonics 10, 1167–1172 (2015). https://doi.org/10.1007/s11468-015-9916-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9916-3

Keywords

Navigation