Skip to main content

Advertisement

Log in

Substrate-Mediated Broadband Tunability in Plasmonic Resonances of Metal Nanoantennas on Finite High-Permittivity Dielectric Substrate

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We investigate the optical response of a gold nanocube antenna supported by a high-permittivity dielectric nanocuboid substrate and propose schemes for broadband tailoring of its plasmonic resonances via alteration in image-charge screening. Based on finite-element-method (FEM) simulations—in agreement with filtered-coupled-dipole-approximations (FCDA)—we explore the tunability and spectral evolution of the substrate-supported nanocube’s hybridized plasmon modes as functions of the relative permittivity and dimensions of the dielectric substrate. Besides numerical calculations, we also derive simple analytical expressions using image-charge theory to readily estimate the resonance spectral shift—gauging the intense particle–substrate interaction—for a substrate-supported nanocube. Strong localized electric field, around the nanocube’s vertices and edges near the substrate, is observed due to the image charges induced in the substrate by the coupled bonding mode arising from hybridization of the primitive dipolar and quadrupolar modes of the nanocube. By introducing slots on the dielectric substrate in the areas around the nanocube’s edges where electric field is highly concentrated, we achieve substrate’s surface-mediated wideband tunability of plasmonic resonance as functions of the geometric parameters of the slots while maintaining the overall dimensions and material of the nanocuboid substrate. These slots enable dynamic tunability of plasmon resonance by placing graphene flakes on them, which facilitates electrical tailoring of nanocube’s plasmon resonance over visible and near-infrared regions. Thus, these proposed schemes would allow one to widely tune the optical responses of any plasmonic nanoantennas using a slotted finite high-permittivity-dielectric substrate for numerous applications in nanophotonic integrated circuits and plasmonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bharadwaj P, Deutsch B, Novotny L (2009) Optical antennas. Adv Opt Photon 1(3):438–483

    Article  Google Scholar 

  2. Kreibig U, Vollmer M (1995) Optical Properties of Metal Clusters. Springer, Berlin

    Book  Google Scholar 

  3. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photon 1:641–648

    Article  CAS  Google Scholar 

  4. Xiong W, Sikdar D, Yap LW, Premaratne M, Li X, Cheng W (2015) Multilayered core–satellite nanoassemblies with finely-tunable broadband plasmon resonances. Nanoscale 7:3445–3452

    Article  CAS  Google Scholar 

  5. Khan AD, Miano G (2013) Higher order tunable fano resonances in multilayer nanocones. Plasmonics 8 (2):1023–1034

    Article  CAS  Google Scholar 

  6. Sikdar D, Rukhlenko ID, Cheng W, Premaratne M (2013) Unveiling ultrasharp scattering–switching signatures of layered gold–dielectric–gold nanospheres. J Opt Soc Am B 30(8):2066–2074

    Article  CAS  Google Scholar 

  7. Yong KT, Swihart MT, Ding H, Prasad PN (2009) Preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging. Plasmonics 4(2):79–93

    Article  CAS  Google Scholar 

  8. Sikdar D, Rukhlenko ID, Cheng W, Premaratne M (2014) Tunable broadband optical responses of substrate-supported metal/dielectric/metal nanospheres. Plasmonics 9(3):659–672

    Article  CAS  Google Scholar 

  9. Acevedo R, Lombardini R, Halas NJ, Johnson BR (2009) Plasmonic enhancement of Raman optical activity in molecules near metal nanoshells. J Phys Chem A 113(47):13173–13183

    Article  CAS  Google Scholar 

  10. Xiong W, Sikdar D, Walsh M, Si KJ, Tang Y, Chen Y, Mazid R, Weyland M, Rukhlenko ID, Etheridge J, et al. (2013) Single-crystal caged gold nanorods with tunable broadband plasmon resonances. Chem Commun 49:9630–9632

    Article  CAS  Google Scholar 

  11. Major KJ, De C, Obare SO (2009) Recent advances in the synthesis of plasmonic bimetallic nanoparticles. Plasmonics 4(1):61–78

    Article  CAS  Google Scholar 

  12. Sikdar D, Rukhlenko ID, Cheng W, Premaratne M (2013) Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy. Biom Opt Express 4(1):15–31

    Article  CAS  Google Scholar 

  13. Sikdar D, Rukhlenko ID, Cheng W, Premaratne M (2013) Optimized gold nanoshell ensembles for biomedical applications. Nanoscale Res Lett 8(1):142–146

    Article  Google Scholar 

  14. Zhu W, Sikdar D, Xiao F, Kang M, Premaratne M (2014) Gold nanoparticles with gain-assisted coating for ultra-sensitive biomedical sensing. Plasmonics. doi:10.1007/s11468-014-9875-0

    Google Scholar 

  15. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2 (3):107–118

    Article  CAS  Google Scholar 

  16. Guo P, Sikdar D, Huang X, Si KJ, Xiong W, Gong S, Yap LW, Premaratne M, Cheng W (2015) Plasmonic core–shell nanoparticles for SERS detection of the pesticide Thiram: size- and shape-dependent Raman enhancement. Nanoscale 7: 2862–2868

    Article  CAS  Google Scholar 

  17. Lakowicz JR (2006) Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 1(1):5–33

    Article  CAS  Google Scholar 

  18. Massa E, Maier SA, Giannini V (2013) An analytical approach to light scattering from small cubic and rectangular cuboidal nanoantennas. New J Phys 15(6):063013

    Article  Google Scholar 

  19. Hutter T, Elliott SR, Mahajan S (2013) Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants. Nanotechnol 24(3):035201

    Article  Google Scholar 

  20. Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11(4):1657–1663

    Article  CAS  Google Scholar 

  21. Chau YF, Jiang ZH (2011) Plasmonics effects of nanometal embedded in a dielectric substrate. Plasmonics 6(3):581–589

    Article  CAS  Google Scholar 

  22. Knight MW, Wu Y, Lassiter JB, Nordlander P, Halas NJ (2009) Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. Nano Lett 9(5):2188–2192

    Article  CAS  Google Scholar 

  23. Chen F, Johnston RL (2009) Plasmonic properties of silver nanoparticles on two substrates. Plasmonics 4 (2):147–152

    Article  CAS  Google Scholar 

  24. Wu Y, Nordlander P (2010) Finite-difference time-domain modeling of the optical properties of nanoparticles near dielectric substrates. J Phys Chem C 114(16):7302–7307

    Article  CAS  Google Scholar 

  25. Pinchuk A, Schatz G (2005) Anisotropic polarizability tensor of a dimer of nanospheres in the vicinity of a plane substrate. Nanotechnol 16(10):2209–2217

    Article  Google Scholar 

  26. Pinchuk A, Hilger A, Von Plessen G, Kreibig U (2004) Substrate effect on the optical response of silver nanoparticles. Nanotechnol 15(12):1890–1896

    Article  CAS  Google Scholar 

  27. Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles. J Phys Chem B 105(12):2343–2350

    Article  CAS  Google Scholar 

  28. Zhang F, Kang L, Zhao Q, Zhou J, Lippens D (2012) Magnetic and electric coupling effects of dielectric metamaterial. New J Phys 14(3):033031

    Article  Google Scholar 

  29. Sikdar D, Cheng W, Premaratne M (2015) Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering. J Appl Phys 117(8):083101

    Article  Google Scholar 

  30. Zhang F, Zhao Q, Lan C, He X, Zhang W, Zhou J, Qiu K (2014) Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial. Appl Phys Lett 104(13):131907

    Article  Google Scholar 

  31. Fuchs R (1975) Theory of the optical properties of ionic crystal cubes. Phys Rev B 11(4):1732

    Article  CAS  Google Scholar 

  32. Ruppin R (1996) Plasmon frequencies of cube shaped metal clusters. Z Phys D: At Mol Clusters 36(1):69–71

    Article  CAS  Google Scholar 

  33. Meier M, Wokaun A (1983) Enhanced fields on large metal particles: dynamic depolarization. Opt Lett 8 (11):581–583

    Article  CAS  Google Scholar 

  34. Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B 16(10):1824–1832

    Article  CAS  Google Scholar 

  35. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

  36. Bedeaux D, Vlieger J (2004) Optical properties of surfaces. Imperial College Press, London

    Book  Google Scholar 

  37. Valamanesh M, Borensztein Y, Langlois C, Lacaze E (2011) Substrate effect on the plasmon resonance of supported flat silver nanoparticles. J Phys Chem C 115(7):2914–2922

    Article  CAS  Google Scholar 

  38. Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11:1657–1663

    Article  CAS  Google Scholar 

  39. Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6(5):3677–3694

    Article  CAS  Google Scholar 

  40. Sikdar D, Premaratne M (2014) Electrically tunable directional spp propagation in gold-nanoparticle-assisted graphene nanoribbons. In: Photonics Conference (IPC), 2014 IEEE, pp 330–331

  41. Zhu J, Liu QH, Lin T (2013) Manipulating light absorption of graphene using plasmonic nanoparticles. Nanoscale 5(17): 7785–7789

    Article  CAS  Google Scholar 

  42. Jablan M, Buljan H, Soljacic M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80 (24): 245435

    Article  Google Scholar 

  43. Ooi KJA, Chu HS, Ang LK, Bai P (2013) Mid-infrared active graphene nanoribbon plasmonic waveguide devices. J Opt Soc Am B 30(12):3111–3116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work of DS is supported by Victoria India Doctoral Scholarship. The work of WC, WZ, and MP is supported by the Australian Research Council, through its Discovery Grants DP120100170, DP110100713 and and DP140100883.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Sikdar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikdar, D., Zhu, W., Cheng, W. et al. Substrate-Mediated Broadband Tunability in Plasmonic Resonances of Metal Nanoantennas on Finite High-Permittivity Dielectric Substrate. Plasmonics 10, 1663–1673 (2015). https://doi.org/10.1007/s11468-015-9968-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9968-4

Keywords

Navigation