Skip to main content
Log in

Enhanced Fluorescence, Raman Scattering, and Higher Order Raman Modes in ZnO:Ag Nanorods

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We report exciton and phonon properties of pure and Ag-modified ZnO nanostructures are prepared using solution-based refluxing route. X-ray diffraction studies show lower angle shift in the characteristic diffraction peaks of ZnO. Additional diffraction peaks related to nano-sized Ag were observed from XRD. Broad absorption band (which covers the 400–1000 nm range) results from surface plasmon resonance (SPR) absorption of metallic silver is observed from optical absorption studies. Enhancement in luminescence and Raman scattering is observed in Ag-modified sample when compared with pure ZnO sample. This is attributed to the presence of metallic Ag in the samples, and we attempted to understand the observed enhancement from the perspective of the local field associated with the metal nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aslan K, Wu M, Lakowicz JR, Geddes CD (2007) Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J Am Chem Soc 129:1524

    Article  CAS  Google Scholar 

  2. Liu L, Miao P, Xu Y, Tian Z, Zou Z, Li G (2010) Study of Pt/TiO2 nanocomposite for cancer-cell treatment. J Photochem Photobiol B 98:207

    Article  CAS  Google Scholar 

  3. Wei Y, Li Y, Liu X, Xian Y, Shi G, Jin L (2010) ZnO nanorods/Au hybrid nanocomposites for glucose biosensor. Biosens Bioelectron 26:275

    Article  CAS  Google Scholar 

  4. Shan G, Wang S, Fei X, Liu Y, Yang G (2009) Heterostructured ZnO/Au nanoparticles-based resonant Raman scattering for protein detection. J Phys Chem B 113:1468

    Article  CAS  Google Scholar 

  5. Aldeek F, Mustin C, Balan L, Medjahdi G, Carmes TR, Arnoux P, Schneider R (2011) Enhanced photostability from CdSe(S)/ZnO core/shell quantum dots and their use in biolabeling. Eur J Inorg Chem 2011:794

    Article  Google Scholar 

  6. Asifa MH, Usman Ali SM, Nur O, Willander M, Englund UH, Elinder F (2010) Functionalized ZnO nanorod-based selective magnesium ion sensor for intracellular measurements. Biosens Bioelect 26:1118

    Article  Google Scholar 

  7. Wu YL, Lim CS, Fu S, Tok AIY, Lau HM, Boey FYC, Zeng XT (2007) Surface modifications of ZnO quantum dots for bio-imaging. Nanotechnology 18:215604

    Article  Google Scholar 

  8. Stuart HR, Hall DG (1996) Absorption enhancement in silicon-on-insulator waveguides using metal island films. Appl Phys Lett 69:16

    Article  Google Scholar 

  9. Deng S, Fan HM, Zhang X, Loh KP, Cheng CL, Sow CH, Foo YL (2009) An effective surface-enhanced Raman scattering template based on a Ag nanocluster–ZnO nanowire array. Nanotechnology 20:175705

    Article  CAS  Google Scholar 

  10. Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005) Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons. J Fluoresc 15:643

    Article  CAS  Google Scholar 

  11. Tang H, Meng G, Huang Q, Zhang Z, Huang Z, Zhu C (2012) Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls. Adv Funct Mater 22:218

    Article  Google Scholar 

  12. Lee J, Govorov AO, Dulka J, Kotov NA (2004) Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon-exciton interactions, luminescence enhancement, and collective effects. Nano Lett 4:2323

    Article  CAS  Google Scholar 

  13. Ansari SA, Khan MM, Ansari MO, Lee J, Cho MH (2013) Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag-ZnO nanocomposite. J Phys Chem C 117:27023

    Article  CAS  Google Scholar 

  14. Zhang WQ, Lu Y, Zhang TK, Xu W, Zhang M, Yu SH (2008) Controlled synthesis and biocompatibility of water-soluble ZnO nanorods/Au nanocomposites with tunable UV and visible emission intensity. J Phys Chem C 112:19872

    Article  CAS  Google Scholar 

  15. Guo SH, Heetderks JJ, Kan HC, Phaneuf RJ (2008) Enhanced fluorescence and near-field intensity for Ag nanowire/nanocolumn arrays: evidence for the role of surface plasmon standing waves. Opt Express 16:18417

    Article  CAS  Google Scholar 

  16. Lupan O, Chow L, Ono LK, Cuenya BR, Chai G, Khallaf H, Park S, Schulte A (2010) Synthesis and characterization of Ag- or Sb-doped ZnO nanorods by a facile hydrothermal route. J Phys Chem C 114:12401

    Article  CAS  Google Scholar 

  17. Georgekutty R, Seery MK, Pillai SC (2008) A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism. J Phys Chem C 112:13563

    Article  CAS  Google Scholar 

  18. Liu HR, Shao GX, Zhao JF, Zhang ZX, Zhang Y, Liang J, Liu XG, Jia HS, Xu BS (2012) Worm-like Ag/ZnO core−shell heterostructural composites: fabrication, characterization, and photocatalysis. J Phys Chem C 116:16182

    Article  CAS  Google Scholar 

  19. Wang YS, Thomas PJ, O’Brien P (2006) Optical properties Of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions. J Phys Chem B 110:21412

    Article  CAS  Google Scholar 

  20. Irimpan L, Nampoori VPN, Radhakrishnan P (2010) Spectral and nonlinear optical characteristics of ZnO nanocomposites. Sci Adv Mater 2:117

    Article  CAS  Google Scholar 

  21. Li F, Liu X, Qin Q, Wu J, Li Z, Huang X (2009) Sonochemical synthesis and characterization of ZnO nanorod/Ag nanoparticle composites. Cryst Res Technol 44:1249

    Article  CAS  Google Scholar 

  22. Irimpan L, Nampoori VPN, Radhakrishnan P (2006) Spectral and nonlinear optical characteristics of nanocomposites of ZnO–Ag. Chem Phys Lett 455:265

    Article  Google Scholar 

  23. Duan L, Lin B, Zhang W, Zhong S, Fua Z (2006) Enhancement of ultraviolet emissions from ZnO films by Ag doping. Appl Phys Lett 88:232110

    Article  Google Scholar 

  24. Tanabe K (2008) Field enhancement around metal nanoparticles and nanoshells: a systematic investigation. J Phys Chem C 112:15721

    Article  CAS  Google Scholar 

  25. Palik ED (1985) Handbook of optical constants of solids. Academic, New York

    Google Scholar 

  26. Yang Y, Guo W, Wang X, Wang Z, Qi J, Zhang Y (2012) Size dependence of dielectric constant in a single pencil-like ZnO nanowire. Nano Lett 12:1919

    Article  CAS  Google Scholar 

  27. Lai CW, An J, Ong HC (2005) Surface-plasmon-mediated emission from metal-capped ZnO thin films. Appl Phys Lett 86:251105

    Article  Google Scholar 

  28. Cuscó R, Lladó EA, Ibáñez J, Artús L (2007) Temperature dependence of Raman scattering in ZnO. Phys Rev B 75:165202

    Article  Google Scholar 

  29. Xie W, Li Y, Sun W, Huang J, Xie H, Zhao X (2010) Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability. J Photochem Photobio A 216:149

    Article  CAS  Google Scholar 

  30. Ren C, Yang B, Wu M, Xu J, Fu Z, lv Y, Guo T, Zhao Y, Zhu C (2010) Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance. J Hazard MateR 182:123

    Article  CAS  Google Scholar 

  31. Gangopadhyay P, Kesavamoorthy R, Nair KGM, Dhandapani R (2000) Raman scattering studies on silver nanoclusters in a silica matrix formed by ion-beam mixing. J Appl Phys 88:4975

    Article  CAS  Google Scholar 

  32. Hadad L, Perkas N, Gofer Y, Moreno JC, Ghule A, Gedanken A (2007) Sonochemical deposition of silver nanoparticles on wool fibers. J Appl Polym Sci 104:1732

    Article  CAS  Google Scholar 

  33. Bhattacharyya S, Gedanken A (2008) Microwave-assisted insertion of silver nanoparticles into 3-D mesoporous zinc oxide nanocomposites and nanorods. J Phys Chem C 112:659

    Article  CAS  Google Scholar 

  34. Messinger BJ, Raben KU, Chang RK, Barber PW (1981) Local fields at the surface of noble-metal microspheres. Phys Rev B 2:649

    Article  Google Scholar 

  35. Zhu J (2007) Spatial dependence of the local field enhancement in dielectric shell coated silver nanospheres. Appl Surf Sci 253:8729

    Article  CAS  Google Scholar 

  36. Liu CY, Dvoynenko MM, Lai MY, Chan TH, Lee YR, Wang JK, Wang YL (2010) Anomalously enhanced Raman scattering from longitudinal optical phonons on Ag-nanoparticle-covered GaN and ZnO. Appl Phys Lett 96:033109

    Article  Google Scholar 

  37. Rumyantseva A, Kostcheev S, Adam PM, Gaponenko SV, Vaschenko SV, Kulakovich OS, Ramanenka AA, Guzatov DV, Korbutyak D, Dzhagan V, Stroyuk AL, Shvalagi VV (2013) Non-resonant surface enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles. ACS Nano 7:3420

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Karthikeyan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udayabhaskar, R., Mangalaraja, R.V. & Karthikeyan, B. Enhanced Fluorescence, Raman Scattering, and Higher Order Raman Modes in ZnO:Ag Nanorods. Plasmonics 10, 893–899 (2015). https://doi.org/10.1007/s11468-015-9877-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9877-6

Keywords

Navigation