Skip to main content
Log in

Facile synthesis of aqueous silver nanoparticles and silver/molybdenum disulfide nanocomposites and investigation of their nonlinear optical properties

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Silver nanoparticle (AgNP) aqueous colloids with different surface plasmon resonance (SPR) frequencies were controllably synthesized by a facile and green chemical synthesis method. The obtained AgNPs with an average diameter of ~ 15 nm show a symmetrical SPR peak at ~ 400 nm. Another longitudinal SPR mode at ~ 520 nm occurs when increasing the amount of ethanol according to the ultraviolet–visible light spectra. The third-order nonlinear optical (NLO) absorption properties of the AgNP colloids were found to switch from two-photon absorption (TPA) to saturable absorption (SA) by tuning the SPR frequency using Z-scan technique with 340 fs pulses at 515 nm. When combined with two-dimensional (2D) MoS2, an enhanced SA response is observed for Ag/MoS2 nanocomposites compared with the counterparts. The nonlinear absorption coefficient of Ag/MoS2 nanocomposites is about − (10.93 ± 0.6) × 10–2 cm·GW−1, which is almost three times higher than that of MoS2. Our work has an instructive value in promoting the potential application of AgNPs and its nanocomposites in optoelectronic and photonic devices, such as optical limiting and ultrafast laser pulse generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vadakkekara R, Chakraborty M, Parikh PA. Catalytic performance of silica-supported silver nanoparticles for liquid-phase oxidation of ethylbenzene. Ind Eng Chem Res. 2012;51:5691.

    Article  CAS  Google Scholar 

  2. Fereja SL, Li P, Guo JH, Fang ZY, Zhang ZW, Zhuang ZH, Zhang XH, Liu KF, Chen W. Silver-enhanced fluorescence of bimetallic Au/Ag nanoclusters as ultrasensitive sensing probe for the detection of folic acid. Talanta. 2021;233:122469.

    Article  CAS  Google Scholar 

  3. Fredj Z, Ben Ali M, Abbas MN, Dempsey E. Simultaneous determination of ascorbic acid, uric acid and dopamine using silver nanoparticles and copper monoamino-phthalocyanine functionalised acrylate polymer. Anal Methods. 2020;12(31):3883.

    Article  CAS  Google Scholar 

  4. Ramirez N, Zambo D, Sardella F, Kissling PA, Schlosser A, Graf RT, Pluta D, Deiana C, Bigall NC. Pd-doped cellulose carbon aerogels for energy storage applications. Adv Mater Interfaces. 2021;8:2100310.

    Article  CAS  Google Scholar 

  5. Xu K, Zhou R, Takei K, Hon M. Toward flexible surface enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv Sci. 2019;6:1900925.

    Article  CAS  Google Scholar 

  6. Liu LT, Aleisa R, Zhang Y, Feng J, Zheng YQ, Yin YD, Wang WS. Dynamic color-switching of plasmonic nanoparticle films. Angew Chem Int Ed. 2019;58(45):16307.

    Article  CAS  Google Scholar 

  7. Peyser LA, Vinson AE, Bartko AP, Dickson RM. Photoactivated fluorescence from individual silver nanoclusters. Science. 2001;291:103.

    Article  CAS  Google Scholar 

  8. Zheng J, Ding Y, Tian BZ, Wang ZL, Zhuang XW. Luminescent and Raman active silver nanoparticles with polycrystalline structure. J Am Chem Soc. 2008;130:10472.

    Article  CAS  Google Scholar 

  9. Aikens CM, Li SZ, Schatz GC. From discrete electronic states to plasmons: TDDFT optical absorption properties of Ag-n (n = 10, 20, 35, 56, 84, 120) tetrahedral clusters. J Phys Chem C. 2008;112:11272.

    Article  CAS  Google Scholar 

  10. Roy S, Baral A, Banerjee A. Tuning of silver cluster emission from blue to red using a bio-active peptide in water. ACS Appl Mater Interfaces. 2014;6:4050.

    Article  CAS  Google Scholar 

  11. Cieśla J, Chylińska M, Zdunek A, Szymańska-Chargot M. Effect of different conditions of synthesis on properties of silver nanoparticles stabilized by nanocellulose from carrot pomace. Carbohydr Polym. 2020;245:116513.

    Article  CAS  Google Scholar 

  12. Shang L, Dong SJ. Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem Commun. 2008;44(9):1088.

    Article  CAS  Google Scholar 

  13. Luo M, Huang H, Choi SI, Zhang C, da Silva RR, Peng HC, Li ZY, Liu J, He Z, Xia Y. Facile synthesis of Ag nanorods with no plasmon resonance peak in the visible region by using Pd decahedra of 16 nm in size as seeds. ACS Nano. 2015;9:10523.

    Article  CAS  Google Scholar 

  14. Tsuji M, Gomi S, Maeda Y, Matsunaga M, Hikino S, Uto K, Tsuji T, Kawazumi H. Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H2O2. Langmuir. 2012;28:8845.

    Article  CAS  Google Scholar 

  15. Scardaci V, Pulvirenti M, Condorelli M, Compagnini G. Monochromatic light driven synthesis and growth of flat silver nanoparticles and their plasmon sensitivity. J Mater Chem C. 2020;8:9734.

    Article  CAS  Google Scholar 

  16. Haghighatzadeh A. Enhanced third-order optical susceptibility in Ag-doped CeO2 nanostructures under pulsed Nd-YVO4 laser. Opt Laser Technol. 2020;126:106114.

    Article  CAS  Google Scholar 

  17. Liu WJ, Liu ML, Lin S, Liu JC, Lei M, Wu H, Dai CQ, Wei ZY. Synthesis of high quality silver nanowires and their applications in ultrafast photonics. Opt Express. 2019;27(12):16440.

    Article  CAS  Google Scholar 

  18. Gieseking RLM. Third-order nonlinear optical properties of Ag nanoclusters: connecting molecule-like and nanoparticle-like behavior. Chem Mater. 2019;31:6850.

    Article  CAS  Google Scholar 

  19. Wada K, Onodera T, Kasai H, Sato R, Takeda Y, Oikawa H. Third-order nonlinear optical properties of layered type hybridized thin films consisting of oriented polydiacetylene nanofibers and silver nanoparticles. J Phys Chem C. 2019;123:25781.

    Article  CAS  Google Scholar 

  20. Ferreira E, Kharisov B, Vázquez A, Méndez EA, Severiano-Carrillo I, Trejo-Durán M. Tuning the nonlinear optical properties of Au@Ag bimetallic nanoparticles. J Mol Liq. 2020;298:112057.

    Article  CAS  Google Scholar 

  21. Zhu JH, Li YX, Chen Y, Wang J, Zhang B, Zhang JJ, Blau WJ. Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. Carbon. 2011;49:1900.

    Article  CAS  Google Scholar 

  22. Bhavitha KB, Nair AK, Perumbilavil S, Joseph S, Kala MS, Saha A, Narayanan RA, Hameed N, Thomas S, Oluwafemi OS. Investigating solvent effects on aggregation behaviour, linear and nonlinear optical properties of silver nanoclusters. Opt Mater. 2017;73:695.

    Article  CAS  Google Scholar 

  23. Zvyagin AI, Perepelitsa AS, Lavlinskaya MS, Ovchinnikov OV, Smirnov MS, Ganeev RA. Demonstration of variation of the nonlinear optical absorption of nonspherical silver nanoparticles. Optik. 2018;175:93.

    Article  CAS  Google Scholar 

  24. Maurya SK, Ganeev RA, Rout A, Guo C. Influence of PVP polymer concentration on nonlinear absorption in silver nanoparticles at resonant excitation. Appl Phys A. 2020;126:26.

    Article  CAS  Google Scholar 

  25. Li YX, Dong NN, Zhang SF, Zhang XY, Feng YY, Wang KP, Zhang L, Wang J. Giant two-photon absorption in monolayer MoS2. Laser Photonics Rev. 2015;9(4):427.

    Article  CAS  Google Scholar 

  26. Zhang XY, Zhang SF, Chang CX, Feng YY, Li YX, Dong NN, Wang KP, Zhang L, Blau WJ, Wang J. Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance. Nanoscale. 2015;7(7):2978.

    Article  CAS  Google Scholar 

  27. Zhang XY, Zhang SF, Xie YF, Huang JW, Wang L, Cui Y, Wang J. Tailoring the nonlinear optical performance of two-dimensional MoS2 nanofilms via defect engineering. Nanoscale. 2018;10:17924.

    Article  CAS  Google Scholar 

  28. Shao YB, Chen C, Han J, Kong D, Wu WZ, Gao YC. Enhanced nonlinear optical absorption of WS2 by Ag nanoparticles. Ferroelectrics. 2020;563:177.

    Article  CAS  Google Scholar 

  29. Poudel Y, Lim GN, Moazzezi M, Hennighausen Z, Rostovtsev Y, D’Souza F, Kar S, Neogi A. Active control of coherent dynamics in hybrid plasmonic MoS2 monolayers with dressed phonons. ACS Photonics. 2019;6:1645.

    Article  CAS  Google Scholar 

  30. Wang J, Hernandez Y, Lotya M, Coleman JN, Blau WJ. Broadband nonlinear optical response of graphene dispersions. Adv Mater. 2009;21:2430.

    Article  CAS  Google Scholar 

  31. Wiley B, Im S, Li Z, McLellan JM, Siekkinen A, Xia Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B. 2006;110:15666.

    Article  CAS  Google Scholar 

  32. Zook JM, Long SE, Cleveland D, Geronimo CLA, MacCuspie RI. Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV–Visible absorbance. Anal Bioanal Chem. 2011;401:1993.

    Article  CAS  Google Scholar 

  33. Gao MJ, Sun L, Wang ZQ, Zhao YB. Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties. Mater Sci Eng C. 2013;33:397.

    Article  CAS  Google Scholar 

  34. Fernandez-Hernandez RC, Gleason-Villagran R, Torres-Torres C, Rodriguez-Fernandez L, Crespo-Sosa A, Cheang-Wong JC, Lopez-Suarez A, Rangel-Rojo R, Oliver A, Reyes-Esqueda JA. On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites. J Opt. 2012;14:125203.

    Article  CAS  Google Scholar 

  35. Campos A, Troc N, Cottancin E, Pellarin M, Weissker HC, Lermé J, Kociak M, Hillenkamp M. Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments. Nat Phys. 2019;15:275.

    Article  CAS  Google Scholar 

  36. Noguez C. Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C. 2007;111:3806.

    Article  CAS  Google Scholar 

  37. Morales-Bonilla S, Torres-Torresa C, Trejo-Valdez M, Torres-Torres D, Urriolagoitia-Calderóna G. Mechano-optical transmittance and third order nonlinear optical properties exhibited by Au nanoparticles. Optik. 2015;126:4093.

    Article  CAS  Google Scholar 

  38. Zhang SF, Dong NN, McEvoy N, O’Brien M, Winters S, Berner NC, Yim CY, Li YX, Zhang XY, Chen ZH, Zhang L, Duesberg GS, Wang J. Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films. ACS Nano. 2015;9:7142.

    Article  CAS  Google Scholar 

  39. Cheng X, Dong NN, Li B, Zhang XY, Zhang SF, Jiao J, Blau WJ, Zhang L, Wang J. Controllable broadband nonlinear optical response of graphene dispersions by tuning vacuum pressure. Opt Express. 2013;21(14):16486.

    Article  CAS  Google Scholar 

  40. Allu R, Banerjee D, Avasarala R, Hamad S, Rao SV, Podagatlapalli GK. Broadband femtosecond nonlinear optical properties of silver nanowire films. Opt Mater. 2019;96:109305.

    Article  CAS  Google Scholar 

  41. Boggess TF, Bohnert KM, Mansour K, Moss SC, Boyd IW, Smirl AL. Simultaneous measurement of the two-photon coefficient and free-carrier cross section above the bandgap of crystalline silicon. IEEE J Quantum Electron. 1986;22:360.

    Article  Google Scholar 

  42. Torres-Torres C, Tamayo-Rivera L, Rangel-Rojo R, Torres-Martínez R, Silva-Pereyra HG, Reyes-Esqueda JA, Rodríguez-Fernández L, Crespo-Sosa A, Cheang-Wong JC, Oliver A. Ultrafast optical phase modulation with metallic nanoparticles in ion-implanted bilayer silica. Nanotechnology. 2011;22:355710.

    Article  CAS  Google Scholar 

  43. Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, Van Stryland EW. Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron. 1990;26:760.

    Article  CAS  Google Scholar 

  44. Zhang SF, Li YX, Zhang XY, Dong NN, Wang KP, Hanlon D, Coleman JN, Zhang L, Wang J. Slow and fast absorption saturation of black phosphorus: experiment and modelling. Nanoscale. 2016;8:17374.

    Article  CAS  Google Scholar 

  45. Hari M, Mathew S, Nithyaja B, Joseph SA, Nampoori VPN, Radhakrishnan P. Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelength. Opt Quantum Electron. 2012;43:49.

    Article  CAS  Google Scholar 

  46. López-Suárez A, Torres-Torres C, Can-Uc B, Rangel-Rojo R, Valencia CE, Oliver A. Third-order nonlinear optical properties exhibited by a bilayer configuration of silver nanoparticles integrated to silicon nanocrystals embedded in ion-implanted silica. J Opt Soc Am B. 2015;32(5):805.

    Article  CAS  Google Scholar 

  47. Gorham JM, MacCuspie RI, Klein KL, Fairbrother DH, Holbrook RD. UV-induced photochemical transformations of citrate-capped silver nanoparticle suspensions. J Nanopart Res. 2012;14:1139.

    Article  CAS  Google Scholar 

  48. Wang KP, Wang J, Fan JT, Lotya M, O’Neill A, Fox D, Feng YY, Zhang XY, Jiang BX, Zhao QZ, Zhang HZ, Coleman JN, Zhang L, Blau WJ. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano. 2013;7(10):9260.

    Article  CAS  Google Scholar 

  49. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 2011;331:568.

    Article  CAS  Google Scholar 

  50. Ebrahimzadeh M, Haghighatzadeh A, Dutta J. Improved third-order optical nonlinearities in Ag/MoS2 Schottky-type nano/hetero-junctions. Opt Laser Technol. 2021;140:107092.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) (Grant No. 51972318), the Natural Science Foundation of Shanghai (Grant No. 19ZR1479300), and the Strategic Priority Research Program of Chinese Academy of Sciences (CAS) (Grant No. XDB16030700). The authors are also thankful to Mr. Zi-Xin Wang from Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, CAS in measuring the Z-scan data.

Author information

Authors and Affiliations

Authors

Contributions

Xiao-Yan Zhang and Wei Zhou wrote the draft; Xiao-Yan Zhang and Hong-Qiang Wang collected the data; Yi Sun and Jun Wang contributed to conceived the idea of the study. All authors contributed to the writing and revisions.

Corresponding authors

Correspondence to Xiao-Yan Zhang or Yi Sun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XY., Wang, HQ., Sun, Y. et al. Facile synthesis of aqueous silver nanoparticles and silver/molybdenum disulfide nanocomposites and investigation of their nonlinear optical properties. Tungsten 3, 482–491 (2021). https://doi.org/10.1007/s42864-021-00113-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-021-00113-6

Keywords

Navigation