Skip to main content
Log in

A Computational Study of the Giant Local Electric Field Enhancement in Al-Au-Ag Trimetallic Three-Layered Nanoshells

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The surface plasmon resonance (SPR)-induced local field effect in Al-Au-Ag trimetallic three-layered nanoshells has been studied theoretically. Because of having three kinds of metal, three plasmonic bands have been observed in the absorption spectra and the local electric field factor spectra. The local electric field enhancement and the corresponding resonance wavelength for different plasmon coupling modes and spatial positions of the Al-Au-Ag nanoshells with various geometry dimensions are investigated to find the maximum local electric field enhancement. The calculation results indicate that the giant local electric field enhancement could be stimulated by the plasmon coupling in the middle Au shell or the outer Ag shell and could be optimized by increasing the Ag shell thickness and decreasing the Au shell thickness. What is more, the local electric field enhancement also nonmonotonously depends on the dielectric constant of the environment; the local electric field intensity will be weakened when the surrounding dielectric constant is too small or too large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee J, Hua B, Park S, Ha M, Lee Y, Fan Z, Ko H (2014) Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface enhanced Raman spectroscopy. Nanoscale 6:616–623

    Article  CAS  Google Scholar 

  2. Lee D, Yoon S (2015) Gold nanocube-nanosphere dimers: preparation, plasmon coupling, and surface-enhanced Raman scattering. J Phys Chem C 119:7873–7882

    Article  CAS  Google Scholar 

  3. Abadeer NS, Brennan MR, Wilson WL, Murphy CJ (2014) Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods. ACS Nano 8:8392–8406

    Article  CAS  Google Scholar 

  4. Zhang F, Zhu J, Li JJ, Zhao JW (2015) Fluorescence spectral detection of cysteine based on the different medium-coated gold nanorods-Rhodamine 6G probe: from quenching to enhancement. Sensor Actuat B Chem 220:1279–1287

    Article  CAS  Google Scholar 

  5. Zdanowicz M, Harra J, Mäkelä JM, Heinonen E, Ning T, Kauranen M, Genty G (2013) Ordered multilayer silica-metal nanocomposites for second-order nonlinear optics. Appl Phys Lett 103:251907

  6. Yu Y, Fan SS, Dai HW, Ma ZW, Wang X, Han JB, Li L (2014) Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response in Au nanobipyramids, Appl Phys Lett 105:061903

  7. Zhu J, Zhao SM (2015) Double-band enhancement of effective third-order nonlinear susceptibility in gold-dielectric-gold multilayer nanoshells. J Nanopart Res 17:249

    Article  Google Scholar 

  8. Nien LW, Lin SC, Chao BK, Chen MJ, Li JH, Hsueh CH (2013) Giant electric field enhancement and localized surface plasmon resonance by optimizing contour bowtie nanoantennas. J Phys Chem C 117:25004–25011

    Article  CAS  Google Scholar 

  9. Zhu J (2011) Refractive index dependent local electric field enhancement in cylindrical gold nanohole. J Nanopart Res 13:87–95

    Article  CAS  Google Scholar 

  10. Sun M, Wang YX, Chen ZN, Gong YD, Lim JL, Qing XM (2014) Nanostars on a fiber facet with near field enhancement for surface-enhanced Raman scattering detection. Appl Phys A 115:87–91

    Article  CAS  Google Scholar 

  11. Pedireddy S, Li A, Bosman M, Phang IY, Li S, Ling XY (2013) Synthesis of spiky Ag−Au octahedral nanoparticles and their tunable optical properties. J Phys Chem C 117:16640–16649

    Article  CAS  Google Scholar 

  12. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357–366

    Article  CAS  Google Scholar 

  13. Ross MB, Schatz GC (2014) Aluminum and indium plasmonic nanoantennas in the ultraviolet. J Phys Chem C 118:12506–12514

    Article  CAS  Google Scholar 

  14. Tsai CY, Lin JW, Wu CY, Lin PT, Lu TW, Lee PT (2012) Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode. Nano Lett 12:1648–1654

    Article  CAS  Google Scholar 

  15. Aćimović SS, Kreuzer MP, González MU, Quidant R (2009) Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. ACS Nano 3:1231–1237

    Article  Google Scholar 

  16. Chen JIL, Chen Y, Ginger DS (2010) Plasmonic nanoparticle dimers for optical sensing of DNA in complex media. J Am Chem Soc 132:9600–9601

    Article  CAS  Google Scholar 

  17. Tanabe K (2008) Field enhancement around metal nanoparticles and nanoshells: a systematic investigation. J Phys Chem C 112:15721–15728

    Article  CAS  Google Scholar 

  18. Schelm S, Smith GB (2005) Internal electric field densities of metal nanoshells. J Phys Chem B 109:1689–1694

    Article  CAS  Google Scholar 

  19. Zhu J, Ren YJ, Zhao SM, Zhao JW (2012) The effect of inserted gold nanosphere on the local field enhancement of gold nanoshell. Mater Chem Phys 133:1060–1065

    Article  CAS  Google Scholar 

  20. Wu DJ, Liu XJ (2010) Optimization of silica–silver–gold layered nanoshell for large near-field enhancement. Appl Phys Lett 96:151912

    Article  Google Scholar 

  21. Zhu J, Li JJ, Zhao JW (2013) Local dielectric environment dependent local electric field enhancement in double concentric silver nanotubes. J Phys Chem C 117:584–592

    Article  CAS  Google Scholar 

  22. Gao SY, Li PB, Li FL (2013) Geometrical parameters controlled focusing and enhancing near field in infinite circular metal-dielectric multilayered cylinder. Appl Phys Lett 102:123107

  23. Liao X, Chen Y, Qin M, Chen Y, Yang L, Zhang H, Tian Y (2013) Au–Ag–Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole. Talanta 117:203–208

    Article  CAS  Google Scholar 

  24. Zhu J, Li JJ, Zhao JW (2014) The study of surface plasmon resonance in Au-Ag-Au three-layered bimetallic nanoshell: the effect of separate Ag layer. Plasmonics 9:435–441

    Article  CAS  Google Scholar 

  25. Hu J, Chen L, Lian Z, Cao M, Li H, Sun W, Tong N, Zeng H (2012) Deep-ultraviolet−blue-light surface plasmon resonance of Al and Alcore/Al2O3 shell in spherical and cylindrical nanostructures. J Phys Chem C 116:15584–15590

    Article  CAS  Google Scholar 

  26. Knight MW, King NS, Liu L, Everitt HO, Nordlander P, Halas NJ (2014) Aluminum for plasmonics. ACS Nano 8:834–840

    Article  CAS  Google Scholar 

  27. Zori I, Zäch M, Kasemo B, Langhammer C (2011) Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms. ACS Nano 5:2535–2546

    Article  Google Scholar 

  28. Langhammer C, Schwind M, Kasemo B, Zorić I (2008) Localized surface plasmon resonances in aluminum nanodisks. Nano Lett 8:1461–1471

    Article  CAS  Google Scholar 

  29. Schmucker AL, Harris N, Banholzer MJ, Blaber MG, Osberg KD, Schatz GC, Mirkin CA (2010) Correlating nanorod structure with experimentally measured and theoretically predicted surface plasmon resonance. ACS Nano 4:5453–5463

    Article  CAS  Google Scholar 

  30. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426

    Article  CAS  Google Scholar 

  31. Perenboom JAAJ, Wyder P, Meier F (1981) Electronic properties of small metallic particles. Phys Rep 78:173–292

    Article  CAS  Google Scholar 

  32. Ekinci Y, Solak HH, Löffler JF (2008) Plasmon resonances of aluminum nanoparticles and nanorods. J Appl Phys 104:083107

    Article  Google Scholar 

  33. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  34. Prodan E, Lee A, Nordlander P (2002) The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells. Chem Phys Lett 360:325–332

    Article  CAS  Google Scholar 

  35. Canchal-Arias D, Dawson P (2005) Measurement and interpretation of the mid-infrared properties of single crystal and polycrystalline gold. Surf Sci 577:95–111

    Article  CAS  Google Scholar 

  36. Sharma AK, Gupta BD (2006) Fibre-optic sensor based on surface plasmon resonance with Ag–Au alloy nanoparticle films. Nanotechnology 17:124–131

    Article  CAS  Google Scholar 

  37. Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B Opt Phys 16:1824–1832

    Article  CAS  Google Scholar 

  38. Zhu J, Li JJ, Zhao JW (2010) Focusing local electric field inside and outside gold nanotube by choosing the incident frequency. J Comput Theor Nanos 7:2291–2296

    Article  CAS  Google Scholar 

  39. Zhu J, Li JJ, Zhao JW (2011) Tuning the dipolar plasmon hybridization of multishell metal-dielectric nanostructure: gold nanosphere in a gold nanoshell. Plasmonics 6:527–534

    Article  CAS  Google Scholar 

  40. Haus JW, Zhou HS, Takami S, Hirasawa M, Honma I, Komiyama H (1993) Enhanced optical properties of metal-coated nanoparticles. J Appl Phys 73:1043–1048

    Article  CAS  Google Scholar 

  41. Wu DJ, Xu XD, Liu XJ (2008) Electric field enhancement in bimetallic gold and silver nanoshells. Solid State Commun 148:163–167

    Article  CAS  Google Scholar 

  42. Zhu J (2009) Surface plasmon resonance from bimetallic interface in Au–Ag core–shell structure nanowires. Nanoscale Res Lett 4:977–981

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities under grant no. 2011jdgz17 and the National Natural Science Foundation of China under grant no. 11174232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Zhao, Sm. A Computational Study of the Giant Local Electric Field Enhancement in Al-Au-Ag Trimetallic Three-Layered Nanoshells. Plasmonics 11, 659–667 (2016). https://doi.org/10.1007/s11468-015-0099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0099-8

Keywords

Navigation