Skip to main content
Log in

Opto-Electrical Performance Improvement of Mono c-Si Solar Cells Using Dielectric–Metal–Dielectric (D-M-D) Sandwiched Structure-Based Plasmonic Anti-Reflector

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Mono c-Si solar cells based on plasmonic anti-reflector, an ultra-thin silver (Ag) film sandwiched between silicon nitride (SiNx) layers on non-textured c-Si surface, have been explored. Prior to solar cell fabrication, the plasmonic anti-reflector structure was optimized separately by varying different thicknesses of top and bottom SiNx layers and the sandwiched ultra-thin Ag film. For broad wavelength range (300–1200 nm), minimum weighted reflectance was observed in the range of 8–9 %, for the top and bottom SiNx layers having 70–80-nm thickness. The refractive index of top and bottom SiNx layers was in the range of 1.77–1.80 and 1.92–1.96, respectively. A 180-μm non-textured mono c-Si solar cell is fabricated with plasmonic anti-reflector, having top and bottom SiNx layer thickness of 80-nm and 8–9-nm sandwiched ultra-thin Ag layer, resulted in 17 % solar cell efficiency. The measured efficiency was 1.8 % higher compared to 180-μm mono c-Si solar cell with standard 80 nm SiNx anti-reflector. The short circuit current density (J sc) extracted from external quantum efficiency (EQE) has shown 0.5 mA/cm2 enhancement for the dielectric–metal–dielectric (D-M-D) sandwiched structure (plasmonic anti-reflector)-based solar cell compared to standard SiNx anti-reflection coating (ARC) structure-based solar cell. EQE enhancement was seen for all wavelengths above 700 nm with maximum 25–26 % enhancement at around 1125 nm. Also, in UV wavelength region (300–400 nm), EQE enhancement was seen with maximum 25 % enhancement at around 370 nm. Possible phenomenon for improved anti-reflection and EQE in D-M-D-based plasmonic anti-reflector has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. www.itrpv.net/Reports/Downloads/2014/ (2014) International Technology Roadmap for Photovoltaic (ITRPV) 2013 Results, 1–37

  2. Jain S, Depauw V, Miljkovic VD et al (2014) Broadband absorption enhancement in ultra-thin crystalline Si solar cells by incorporating metallic and dielectric nanostructures in the back reflector. Prog Photovolt Res Appl. doi:10.1002/pip.2533

    Google Scholar 

  3. Martini R, Kepa J, Debucquoy M et al (2014) Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells. Appl Phys Lett 105:173906. doi:10.1063/1.4901026

    Article  Google Scholar 

  4. Terheiden B, Ballmann T, Horbelt R et al (2015) Manufacturing 100-μm-thick silicon solar cells with efficiencies greater than 20% in a pilot production line. Phys Status Solidi 212:13–24. doi:10.1002/pssa.201431241

    Article  CAS  Google Scholar 

  5. Teplin CW, Grover S, Chitu A et al (2014) Comparison of thin epitaxial film silicon photovoltaics fabricated on monocrystalline and polycrystalline seed layers on glass. Prog Photovolt Res Appl. doi:10.1002/pip.2505

    Google Scholar 

  6. Ghannam M, Sivoththaman S, Poortmans J et al (1997) Trends in industrial silicon solar cell processes. Sol Energy 59:101–110. doi:10.1016/S0038-092X(96)00095-3

    Article  CAS  Google Scholar 

  7. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213. doi:10.1038/nmat2629

    Article  CAS  Google Scholar 

  8. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105. doi:10.1063/1.2734885

    Article  Google Scholar 

  9. El Daif O, Tong L, Figeys B et al (2012) Front side plasmonic effect on thin silicon epitaxial solar cells. Sol Energy Mater Sol Cells 104:58–63. doi:10.1016/j.solmat.2012.05.009

    Article  Google Scholar 

  10. Spinelli P, Hebbink M, de Waele R et al (2011) Optical impedance matching using coupled plasmonic nanoparticle arrays. Nano Lett 11:1760–1765. doi:10.1021/nl200321u

    Article  CAS  Google Scholar 

  11. Fan R-H, Zhu L-H, Peng R-W et al (2013) Broadband antireflection and light-trapping enhancement of plasmonic solar cells. Phys Rev B 87:195444. doi:10.1103/PhysRevB.87.195444

    Article  Google Scholar 

  12. Yang Y, Pillai S, Mehrvarz H et al (2012) Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons. Sol Energy Mater Sol Cells 101:217–226. doi:10.1016/j.solmat.2012.02.009

    Article  CAS  Google Scholar 

  13. Singh HK, Sharma P, Solanki CS (2014) Broadband reflection minimization using silver ultra thin film sandwiched between silicon nitride layers for c-Si solar cell application. Plasmonics 9:1409–1416. doi:10.1007/s11468-014-9757-5

    Article  CAS  Google Scholar 

  14. Standard IEC 60904–3 (2008) Measurement principles for terrestrial PV solar devices with reference spectral irradiance data. Int Electrochem Commun

  15. Oates TWH, Losurdo M, Noda S, Hinrichs K (2013) The effect of atmospheric tarnishing on the optical and structural properties of silver nanoparticles. J Phys D Appl Phys 46:145308. doi:10.1088/0022-3727/46/14/145308

    Article  Google Scholar 

  16. Saroja G, Vasu V, Nagarani N (2013) Optical studies of Ag2O thin film prepared by electron beam evaporation method. Open J Met 3:57–63. doi:10.4236/ojmetal.2013.34009

    Article  CAS  Google Scholar 

  17. Stephan S (2014) 2/3-Diode Fit (2014) http://nanohub.org/resources/14300. In: nanoHub. http://nanohub.org/resources/14300

  18. Suckow S, Pletzer TM, Kurz H (2014) Fast and reliable calculation of the two-diode model without simplifications. Prog Photovolt Res Appl 22:494–501. doi:10.1002/pip.2301

    Article  Google Scholar 

  19. Robinson SJ, Aberle AG, Green MA (1994) Departures from the principle of superposition in silicon solar cells. J Appl Phys 76:7920. doi:10.1063/1.357902

    Article  CAS  Google Scholar 

  20. Breitenstein O, Rißland S (2013) A two-diode model regarding the distributed series resistance. Sol Energy Mater Sol Cells 110:77–86. doi:10.1016/j.solmat.2012.11.021

    Article  CAS  Google Scholar 

  21. Li Z, Xu G, Chen Y et al (2012) Improved homogeneous emitter solar cells with double layer anti-reflection coatings. Energy Procedia 27:402–405. doi:10.1016/j.egypro.2012.07.084

    Article  CAS  Google Scholar 

  22. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer Series in Material Science vol 25; Berlin: Springer

  23. Murray WA (2005) Optical properties of nanoscale silver structures fabricated by nanosphere lithography. University of Exeter, http://shannon.ex.ac.uk/research/emag/pubs/Andy_Murray_thesis.pdf

  24. Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314. doi:10.1016/j.physrep.2004.11.001

    Article  CAS  Google Scholar 

  25. Jourlin Y, Tonchev S, Tishchenko AV et al (2009) Spatially and polarization resolved plasmon mediated transmission through continuous metal films. Opt Express 17:12155–12166. doi:10.1364/OE.17.012155

    Article  CAS  Google Scholar 

  26. Zhou L, Huang CP, Wu S et al (2010) Enhanced optical transmission through metal-dielectric multilayer gratings. Appl Phys Lett 97:1–4. doi:10.1063/1.3458702

    Google Scholar 

  27. West CS, O’Donnell KA (1995) Observations of backscattering enhancement from polaritons on a rough metal surface. J Opt Soc Am A 12:390. doi:10.1364/JOSAA.12.000390

    Article  Google Scholar 

  28. Gu Z-H, Dummer RS, Maradudin AA, McGurn AR (1989) Experimental study of the opposition effect in the scattering of light from a randomly rough metal surface. Appl Opt 28:537. doi:10.1364/AO.28.000537

    Article  CAS  Google Scholar 

  29. Wang W, Song M, Bae T-S et al (2014) Transparent ultrathin oxygen-doped silver electrodes for flexible organic solar cells. Adv Funct Mater 24:1551–1561. doi:10.1002/adfm.201301359

    Article  CAS  Google Scholar 

  30. Sergeant NP, Hadipour A, Niesen B et al (2012) Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells. Adv Mater 24:728–732. doi:10.1002/adma.201104273

    Article  CAS  Google Scholar 

  31. Sennett RS, Scott GD (1950) The structure of evaporated metal films and their optical properties. J Opt Soc Am 40:203. doi:10.1364/JOSA.40.000203

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was done at the “National Centre for Photovoltaic Research and Education (NCPRE), IIT-Bombay” which is financially supported by the “Ministry of New Renewable Energy (MNRE), Govt. of India.” The authors would like to acknowledge Som Mondal, Mehul Raval, Dr. S. Saravanan, and other colleagues at NCPRE for their help in fabrication and discussions. Also, the authors would like to acknowledge IIT Bombay Nanofabrication Facility (IITBNF) and the faculty members (Prof. J. Vasi, Prof. Anil, Prof. B.M. Arora, and Prof. K.L. Narasimhan) as well as the staff members for their great team work and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H.K., Arunachalam, B., Kumbhar, S. et al. Opto-Electrical Performance Improvement of Mono c-Si Solar Cells Using Dielectric–Metal–Dielectric (D-M-D) Sandwiched Structure-Based Plasmonic Anti-Reflector. Plasmonics 11, 323–336 (2016). https://doi.org/10.1007/s11468-015-0049-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0049-5

Keywords

Navigation