Skip to main content
Log in

Generation of High-Order Resonance Modes in Visible and Near-Infrared Range from Square Ring-Disk System

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A novel square ring-disk (SRD) nanostructure is designed by combining a square ring with a square disk, and its high-order plasmonic resonance is investigated numerically by using COMSOL Multiphysics. The symmetry break of the system is obtained by adjusting the relative position of the square disk and the square ring. The quadrupolar, octupolar, and hexadecapolar plasmonic resonance modes on the square ring and the dipolar plasmonic resonance on the square disk are successfully generated, and their resonance peaks are presented. Meanwhile, the hexadecapolar mode of the square ring appears only when the square disk moves vertically to the polarization direction of the incident light. This research may have potential application in designing high-performance biochemical sensor or SERS and SEF devices in the visible and near-infrared wavelength range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  2. Li JN, Liu TZ, Zheng HR, Gao F, Dong J, Zhang ZL, Zhang ZY (2013) Plasmon resonances and strong electric field enhancements in side-by-side tangent nanospheroid homodimers. Opt Express 21:17176–17185

    Article  CAS  Google Scholar 

  3. Chang YC, Wang SM, Chung HC, Tseng CB, Chang SH (2012) Observation of absorption-dominated bonding dark plasmon mode from metal–insulator–metal nanodisk arrays fabricated by nanospherical-lens lithography. ACS Nano 6:3390–3396

    Article  CAS  Google Scholar 

  4. Panaro S, Nazir A, Liberale C, Das G, Wang H, De Angelis F, Toma A (2014) Dark to bright mode conversion on dipolar nanoantennas: a symmetry-breaking approach. ACS Photon 1:310–314

    Article  CAS  Google Scholar 

  5. Butet J, Martin OJ (2014) Nonlinear plasmonic nanorulers. ACS Nano 8:4931–4939

    Article  CAS  Google Scholar 

  6. Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487:153–164

    Article  CAS  Google Scholar 

  7. Dregely D, Hentschel M, Giessen H (2011) Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters. ACS Nano 5:8202–8211

    Article  CAS  Google Scholar 

  8. Niu L, Zhang JB, Fu YH, Kulkarni S, Lukyanchuk B (2011) Fano resonance in dual-disk ring plasmonic nanostructures. Opt Express 19:22974–22981

    Article  Google Scholar 

  9. Fu YH, Zhang JB, Yu YF, Luk'yanchuk B (2012) Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 6:5130–5137

    Article  CAS  Google Scholar 

  10. Li JN, Liu TZ, Zheng HR, Dong J, He EJ, Gao W, Han QY, Wang C, Wu YN (2014) Higher order Fano resonances and electric field enhancements in disk-ring plasmonic nanostructures with double symmetry breaking. Plasmonics 9:1439–1445

    Article  CAS  Google Scholar 

  11. Zhao KJ, Huo YP, Liu TZ, Li JN, He B, Zhao T, Liu L, Li Y (2015) Manipulation of electrical field enhancements and Fano resonances in nanoellipsoid/ring plasmonic cavities. Plasmonics 10:1–8. doi:10.1007/s11468-015-9899-0

    Article  Google Scholar 

  12. Lovera A, Gallinet B, Nordlander P, Martin OJ (2013) Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 7:4527–4536

    Article  CAS  Google Scholar 

  13. Zhang Q, Wen X, Li G, Ruan Q, Wang J, Xiong Q (2013) Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities. ACS Nano 7:11071–11078

    Article  CAS  Google Scholar 

  14. Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8:3983–3988

    Article  CAS  Google Scholar 

  15. Yue W, Yang Y, Wang Z, Chen L, Wang X (2013) Gold split-ring resonators (SRRs) as substrates for surface-enhanced Raman scattering. J Phys Chem C 117:21908–21915

    Article  CAS  Google Scholar 

  16. von Cube F, Irsen S, Diehl R, Niegemann J, Busch K, Linden S (2013) From isolated metaatoms to photonic metamaterials: evolution of the plasmonic near-field. Nano Lett 13:703–708

  17. Kulkarni V, Prodan E, Nordlander P (2013) Quantum plasmonics: optical properties of a nanomatryushka. Nano Lett 13(12):5873–5879

  18. Liu SD, Yang Z, Liu RP, Li XY (2012) Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings. ACS Nano 6:6260–6271

    Article  CAS  Google Scholar 

  19. Ye J, Wen F, Sobhani H, Lassiter JB, Dorpe PV, Nordlander P, Halas NJ (2012) Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett 12:1660–1667

    Article  CAS  Google Scholar 

  20. Fang Z, Cai J, Yan Z, Nordlander P, Halas NJ, Zhu X (2011) Removing a wedge from a metallic nanodisk reveals a Fano resonance. Nano Lett 11:4475–4479

    Article  CAS  Google Scholar 

  21. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370

    Article  CAS  Google Scholar 

  22. Jin J (2014) The finite element method in electromagnetics. Wiley

  23. Nishijima Y, Rosa L, Juodkazis S (2012) Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting. Opt Express 20:11466–11477

    Article  CAS  Google Scholar 

  24. Halpern AR, Corn RM (2013) Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances. ACS Nano 7:1755–1762

    Article  CAS  Google Scholar 

  25. Schmidt FP, Ditlbacher H, Hofer F, Krenn JR, Hohenester U (2014) Morphing a plasmonic nanodisk into a nanotriangle. Nano Lett 14:4810–4815

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation of China (Grant No. 11174190 and 11304247), the Natural Science Foundation of Shaanxi Educational Committee (No.2013JK0627), and the Natural Science Basis Research Plan in Shaanxi Province of China (Program No.2013JM1008).

Compliance with Ethical Standards

This research did not involve any human or animal participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hairong Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Wu, Y., Zheng, H. et al. Generation of High-Order Resonance Modes in Visible and Near-Infrared Range from Square Ring-Disk System. Plasmonics 10, 1915–1920 (2015). https://doi.org/10.1007/s11468-015-0002-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0002-7

Keywords

Navigation