Skip to main content
Log in

Effect of Monomers and Multimers of Gold Nanostars on Localized Surface Plasmon Resonance and Field Enhancement

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we present the theoretical modeling of gold nanostar for localized surface plasmon resonance-based sensor application and SERS over red to NIR region. Au nanostars exhibiting LSPR peak over 1400 nm were considered in isolated and multimer configuration. The refractive index sensitivity for all configurations was measured, and nanostars exhibit the RIS factor up to 1175 nm/RIU. The effect of interacting nanostars on LSPR and field enhancement was studied by considering multimer configuration forming quadrumer, rhombus, crown, and closed loop nanostructure. The quadrumer, rhombus, and crown pattern points exhibit the highest near-field intensity. In general, the near-field energy localization and plasmon resonance wavelengths of the structure can be considerably influenced by the configuration of nanostars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hulla JE, Sahu SC, Hayes AW (2015) Nanotechnology: history and future human & experimental toxicology. Hum Exp Toxicol 34(12):1318–1321

    Article  CAS  PubMed  Google Scholar 

  2. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586

    Article  CAS  PubMed  Google Scholar 

  3. Gutzler R, Garg M, Ast CR, Kuhnke K, Kern K (2021) Light–matter interaction at atomic scales. Nat Rev Phys 3(6):441–453

    Article  Google Scholar 

  4. Barbillon G (2019) Plasmonics and its applications. Materials 12(9):1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar N, Chamoli P, Misra M, Manoj MK, Sharma A (2022) Advanced metal and carbon nanostructures for medical, drug delivery and bio-imaging applications. Nanoscale 14(11):3987–4017

    Article  CAS  PubMed  Google Scholar 

  6. Monticone F, Alu A (2017) Metamaterial, plasmonic and nanophotonic devices. Rep Prog Phys 80(3):036401

    Article  PubMed  Google Scholar 

  7. Ringe E (2020) Shapes, plasmonic properties, and reactivity of magnesium nanoparticles. J Phys Chem C 124(29):15665–15679

    Article  CAS  Google Scholar 

  8. Yockell-Lelièvre H, Lussier F, Masson JF (2015) Influence of the particle shape and density of self-assembled gold nanoparticle sensors on LSPR and SERS. J Phys Chem C 119(51):28577–28585

    Article  Google Scholar 

  9. Hu M, Chen J, Li ZY, Au L, Hartland GV, Li X, Xia Y (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35(11):1084–1094

    Article  CAS  PubMed  Google Scholar 

  10. Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA (2011) Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem Rev 111(6):3736–3827

    Article  CAS  PubMed  Google Scholar 

  11. Brown RJ, Milton MJ (2008) Nanostructures and nanostructured substrates for surface—enhanced Raman scattering (SERS). J Raman Spectrosc 39(10):1313–1326

    Article  CAS  Google Scholar 

  12. Kumar S, Kumar P, Das A, Pathak CS, Kumar S, Kumar P, Pathak CS (2020) Surface-enhanced raman scattering: Introduction and applications. Recent Advances in Nanophotonics-Fundamentals and Applications. 1–24

  13. Szymanski HA (2012) Raman spectroscopy: theory and practice. Springer Science & Business Media

  14. Guerrero Hernandez AR (2014) Plasmon-enhanced raman and fluorescence spectroscopy with gold and silver nanoparticles

  15. Liu X, Swihart MT (2014) Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chem Soc Rev 43(11):3908–3920

    Article  CAS  PubMed  Google Scholar 

  16. Zada A, Muhammad P, Ahmad W, Hussain Z, Ali S, Khan M, Maqbool M (2020) Surface plasmonic-assisted photocatalysis and optoelectronic devices with noble metal nanocrystals: design, synthesis, and applications. Adv Funct Mater 30(7):1906744

    Article  CAS  Google Scholar 

  17. Farooq S, Rativa D, de Araujo RE (2021) High performance gold dimeric nanorods for plasmonic molecular sensing. IEEE Sens J 21(12):13184–13191

    Article  CAS  Google Scholar 

  18. Kim M, Lee JH, Nam JM (2019) Plasmonic photothermal nanoparticles for biomedical applications. Adv Sci 6(17):1900471

    Article  Google Scholar 

  19. Hao F, Nehl CL, Hafner JH, Nordlander P (2007) Plasmon resonances of a gold nanostar. Nano Lett 7(3):729–732

    Article  CAS  PubMed  Google Scholar 

  20. Vaillant J, Crocherie A, Hirigoyen F, Cadien A, Pond J (2007) Uniform illumination and rigorous electromagnetic simulations applied to CMOS image sensors. Opt Express 15(9):5494–5503

    Article  PubMed  Google Scholar 

  21. Farooq S, Wali F, Zezell DM, de Araujo RE, Rativa D (2022) Optimizing and quantifying gold nanospheres based on LSPR label-free biosensor for dengue diagnosis. Polymers 14(8):1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Farooq S, Shafique S, Ahsan Z, Cardozo O, Wali F (2022) Tailoring the scattering response of optical nanocircuits using modular assembly. Nanomaterials 12(17):2962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Farooq S, Rativa D, Said Z et al (2022) Ultra-sensitive narrow-band plasmonic perfect absorber for sensing applications. Photonics Nanostruct Fundam Appl 50(101018):1569–4410

    Google Scholar 

  24. Farooq S, Rativa D, Said Z et al (2023) High performance blended nanofluid based on gold nanorods chain for harvesting solar radiation. Appl Therm Eng 218(119212):1359–4311

    Google Scholar 

  25. Farooq S, Araujo RE (2021) Identifying high performance gold nanoshells for singlet oxygen generation enhancement. Photodiagn Photodyn Ther 35:102466

    Article  CAS  Google Scholar 

  26. Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Liz-Marzán LM (2019) Present and future of surface-enhanced Raman scattering. ACS Nano 14(1):28–117

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cheng L, Zhu G, Liu G, Zhu L (2020) FDTD simulation of the optical properties for gold nanoparticles. Mater Res Express 7(12):125009

    Article  CAS  Google Scholar 

  28. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422

    Article  CAS  PubMed  Google Scholar 

  29. Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487(4–6):153–164

    Article  CAS  Google Scholar 

  30. Cennamo N, D’Agostino G, Donà A, Dacarro G, Pallavicini P, Pesavento M, Zeni L (2013) Localized surface plasmon resonance with five-branched gold nanostars in a plastic optical fiber for bio-chemical sensor implementation. Sensors 13(11):14676–14686

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Chhaya Sharma had done the simulations and wrote the manuscript text. She had collected the data and plotted the graph. Dr. Jyoti Katyal  devised the idea and helped while preparing and supervising the final draft. Deepanshi contributed in simulation and plotting graph.  and paper editing was done by  Dr. Rina Singh.

Corresponding author

Correspondence to Jyoti Katyal.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, C., Katyal, J., Deepanshi et al. Effect of Monomers and Multimers of Gold Nanostars on Localized Surface Plasmon Resonance and Field Enhancement. Plasmonics 18, 2235–2245 (2023). https://doi.org/10.1007/s11468-023-01941-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01941-7

Keywords

Navigation