Skip to main content

Advertisement

Log in

Tunable Multiple Fano Resonances and Stable Plasmonic Band-Stop Filter Based on a Metal-Insulator-Metal Waveguide

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A metal-insulator-metal (MIM) waveguide consisting of two stub resonators and a ring resonator is proposed, which can be used as refractive index sensor and stop-band filter at the same time. The transmission characteristics of the MIM waveguide structure is studied by the finite element method (FEM). The simulation results show that the typical Fano profile and multiple Fano resonances can be achieved. According to the analysis, the range of stop-band and the multiple Fano resonance positions can be adjusted flexibly and independently by adjusting the aggregate parameters of the MIM waveguide structure. Moreover, it is also found that the two Fano resonances at both ends of the stop band can be determined by the two stubs, and the other two Fano resonances are regulated by the ring resonator. In addition, the spectral position of multi-Fano resonances is highly sensitive to the radius of the ring resonator and the refractive index of the filled medium. The maximum sensitivity and the figure of merit (FOM) of the MIM waveguide structure are 1650 nm/RIU and 117.8 in magnitude, respectively. These results provide a reference for implementing high-sensitivity sensors and large-bandwidth stop-band filter in MIM waveguide coupling systems based on multi-Fano resonance effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the plots within this paper can be available from the corresponding author upon reasonable request.

Code Availability

There is no code in this paper.

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  2. Kano H, Mizuguchi S, Kawata S (1998) Excitation of surface-plasmon polaritons by a focused laser beam. Josa B 15:1381–1386

    Article  CAS  Google Scholar 

  3. Hooper IR, Sambles JR (2002) Dispersion of surface plasmon polaritons on short-pitch metal gratings. Phys Rev B 65:165432

    Article  Google Scholar 

  4. Zhang T, Wang J, Liu Q, Zhou JZ, Dai J, Han X, Li JQ, Zhou Y, Xu K (2019) Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks. Photonics Res 7:368

    Article  CAS  Google Scholar 

  5. Dickson RM, Lyon LA (2000) Unidirectional plasmon propagation in metallic nanowires. J Phys Chem B 104:6095–6098

    Article  CAS  Google Scholar 

  6. Gramotnev DK, Pile DFP (2004) Single-mode subwavelength waveguide with channel plasmon-ploartons in triangular grooves on a metal surface. Appl Phys Lett 85:6323–6325

    Article  CAS  Google Scholar 

  7. Nikolajsen T, Leosson K, Bozhevolnyi SI (2005) In-line extinction modulator based on long-range surface plasmon polaritons. Opt Commun 244:455–459

    Article  CAS  Google Scholar 

  8. Han Z, Forsberg E, He S (2007) Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photonics Technol Lett 19:91–93

    Article  Google Scholar 

  9. Nikolajsen T, Leosson K, Bozhevolnyi S (2004) Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl Phys Lett 85:5833–5835

    Article  CAS  Google Scholar 

  10. Lin XS, Huang XG (2009) Numerical modeling of a teeth-shaped nano-plasmonic waveguide filter. J Opt Soc Am B 26:1263–1268

    Article  CAS  Google Scholar 

  11. Zhai X, Wang L, Wang LL, Li XF, Huang WQ, Wen SH, Fan DY (2013) Tuning bandgap of a double-tooth-shaped MIM waveguide filter by control widths of the teeth. J Opt 15:055008

    Article  CAS  Google Scholar 

  12. Zhu JH, Q. Wang J, Shum P, (2011) A nanoplasmonic high-pass wavelength filter based on a metal-insulator-metal circuitous waveguide. IEEE Trans Nanotechnol 10:1357–1361

    Article  Google Scholar 

  13. Zafar R, Salim M (2014) Wideband slow light achievement in MIM plasmonic waveguide by controlling Fano resonance. Infrared Phys Technol 67:25–29

    Article  CAS  Google Scholar 

  14. Yang ZJ, Hao ZH, Lin HQ, W QQ, (2014) Plasmonic Fano resonances in metallic nanorod complexes. Nanoscale 6:4985–4997

    Article  CAS  Google Scholar 

  15. Chen F, Yao DZ (2016) Realizing of plasmon Fano resonance with a metal nanowall moving along MIM waveguide. Opt Commun 369:72–78

    Article  CAS  Google Scholar 

  16. Liu N, Langguth L, Weiss T, Kastel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8:758–762

    Article  CAS  Google Scholar 

  17. Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10:1103–1107

    Article  CAS  Google Scholar 

  18. Guo ZC, Wen KH, Hu QY, Lai WH, Fang YH (2018) Plasmonic multichannel refractive index sensor based on subwavelength tangent-ring metal–insulator–metal waveguide. Sensors 18:1348

    Article  Google Scholar 

  19. Luk’Yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nat Mater 9:707–715

    Article  CAS  Google Scholar 

  20. Hu F, Yi H, Zhou Z (2011) Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities. Opt Express 19:4848–4855

    Article  Google Scholar 

  21. Kwon SH (2013) Deep subwavelength-scale metal–insulator–metal plasmonic disk cavities for refractive index sensors. IEEE Photonics J 5:4800107

    Article  Google Scholar 

  22. Shi XL, Ma LJ, Zhang ZD, Tang Y, Zhang YJ, Han JQ, Sun YQ (2018) Dual Fano resonance control and refractive index sensors based on a plasmonic waveguide-coupled resonator system. Opt Commun 427:326–330

    Article  CAS  Google Scholar 

  23. Zhang Y, Cui M (2019) Refractive index sensor based on the symmetric MIM waveguide structure. J Electron Mater 48:1005–1010

    Article  CAS  Google Scholar 

  24. Li SL, Zhang YY, Song XK, Wang YL, Yu L (2016) Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system. Opt Express 24:15351–15361

    Article  Google Scholar 

  25. Zhang ZD, Wang RB, Zhang ZY, Tang J, Wang WD, Xue CY, Yan SB (2017) Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator. Plasmonics 12:1007–1013

    Article  CAS  Google Scholar 

  26. Luo SW, Li B, Xiong DS, Zuo DL, Wang XB (2016) A high performance plasmonic sensor based on metal-insulator-metal waveguide coupled with a double-cavity structure. Plasmonics 12:223–227

    Article  Google Scholar 

  27. Zhan ZD, Luo L, Xue CY, Zhang WD, Yan SB (2016) Fano resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors. Sensors 16:642

    Article  Google Scholar 

  28. Zhu JH, Wang QJ, Shum P, Huang XJ (2011) A simple nanometeric plasmonic narrow-band filter structure based on metal–insulator–metal waveguide. IEEE Trans Nanotechnol 10:1371–1376

    Article  Google Scholar 

  29. Maxime C, Brulé T, Stacey L, Wenli C, Mitradeep S, Benjamin C, Karen F, Wei P, Michael C, Jean-Francois M (2017) High figure of merit (FOM) of Bragg modes in Au-coated nanodisk arrays for plasmonic sensing. Small 13:1700908

    Article  Google Scholar 

  30. Yan ZD, Wen XG, Gu P, Zhong H, Zhan P, Chen Z, Wang ZL (2017) Double Fano resonances in individual metallic nanostructure for high sensing sensitivity. Nanotechnology 28:475203

    Article  Google Scholar 

  31. Zhang Y, Zhen YR, Neumann O, Day JK, Nordlander P, Halas NJ (2014) Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nat Commun 5:4424

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Foundation of China (Grant No. 11604198).

Author information

Authors and Affiliations

Authors

Contributions

Methodology: Chen Zhou, Yiping Huo*. Review and editing: Yiyuan Guo and Qiqiang Niu. Writing—original draft preparation: Chen Zhou. Review, editing, supervision. Funding acquisition: Yiping Huo*. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript to be published.

Corresponding author

Correspondence to Yiping Huo.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Huo, Y., Guo, Y. et al. Tunable Multiple Fano Resonances and Stable Plasmonic Band-Stop Filter Based on a Metal-Insulator-Metal Waveguide. Plasmonics 16, 1735–1743 (2021). https://doi.org/10.1007/s11468-021-01437-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01437-2

Keywords

Navigation