Skip to main content
Log in

In-Depth Analysis of Plasmon Modes on Silver Nanotriangular Flakes with Plasmon Hybridization

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Plasmons on silver flakes have attracted widespread attention due to their enormous electromagnetic enhancement. In particular, the plasmon cavity formed between various silver flakes and particles has become a hot topic today. Here, we apply the plasmon hybridization theory to analyze the plasmon modes of the single-layer surface of triangular silver flakes and the plasmon hybridization of the upper and lower surfaces of single or two triangular silver flakes. Through plasmon hybridization, we explain the complex plasmon modes and the dependence of resonance energy on geometric dimensions. Additionally, we also explore the hybridization of double triangular flakes at different distances, which can provide an in-depth understanding of the modes on the triangular flakes during the formation of plasmon cavities. This work provides new insights into the analysis of plasmon modes on triangular flakes and the plasmon cavities formed by triangular flakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Prodan E, Nordlander P (2004) Plasmon hybridization in spherical nanoparticles. J Chem Phys 120(11):5444–5454

    Article  CAS  PubMed  Google Scholar 

  2. Chikkaraddy R, De Nijs B, Benz F, Barrow SJ, Scherman OA, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg JJ (2016) Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535(7610):127–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Korkmaz S, Koc N, Oktem E, Aksu S, Turkmen M (2023) Surface enhanced spectroscopy on organic nanofilms using engineered metamaterials. Sens Actuators A 363:114768

    Article  CAS  Google Scholar 

  4. Menichetti A, Mavridi-Printezi A, Mordini D, Montalti M (2023) Effect of size, shape and surface functionalization on the antibacterial activity of silver nanoparticles. J Funct Biomater 14(5):244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu G, Qv L, Guo Y, Fang Y (2022) Ring gap resonance modes on disk/film coupling system caused by strong plasmon interaction. Plasmonics 17:87–93. https://link.springer.com/article/10.1007/s11468-021-01491-w

    Article  CAS  Google Scholar 

  6. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422

    Article  CAS  PubMed  Google Scholar 

  7. Cialla D, März A, Böhme R, Theil F, Weber K, Schmitt M, Popp J (2012) Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403:27–54

    Article  CAS  PubMed  Google Scholar 

  8. Kneipp J, Kneipp H, Kneipp K (2008) SERS—a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev 37(5):1052–1060

    Article  CAS  PubMed  Google Scholar 

  9. Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP (2012) SERS: materials, applications, and the future. Mater Today 15(1–2):16–25

    Article  CAS  Google Scholar 

  10. Homola J, Piliarik M (2006) Surface Plasmon Resonance (SPR) Sensors. Surface plasmon resonance based sensors. J Homola. Berlin, Heidelberg, Springer Berlin Heidelberg 45–67. https://doi.org/10.1007/5346_014

  11. Morarescu R, Shen H, Vallée RA, Maes B, Kolaric B, Damman P (2012) Exploiting the localized surface plasmon modes in gold triangular nanoparticles for sensing applications. J Mater Chem 22(23):11537–11542

    Article  CAS  Google Scholar 

  12. Imaeda K, Hasegawa S, Imura K (2018) Imaging of plasmonic eigen modes in gold triangular mesoplates by near-field optical microscopy. The Journal of Physical Chemistry C 122(13):7399–7409

    Article  CAS  Google Scholar 

  13. Viarbitskaya S, Teulle A, Marty R, Sharma J, Girard C, Arbouet A, Dujardin E (2013) Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms. Nat Mater 12(5):426–432

    Article  CAS  PubMed  Google Scholar 

  14. Losquin A, Zagonel LF, Myroshnychenko V, Rodríguez-González B, Tencé M, Scarabelli L, Förstner J, Liz-Marzán LM, García de Abajo FJ, Stéphan O (2015) Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements. Nano Lett 15(2):1229–1237

    Article  CAS  PubMed  Google Scholar 

  15. Keast VJ, Walhout C, Pedersen T, Shahcheraghi N, Cortie M, Mitchell DR (2016) Higher order plasmonic modes excited in Ag triangular nanoplates by an electron beam. Plasmonics 11:1081–1086

    Article  CAS  Google Scholar 

  16. Wang H, Brandl DW, Nordlander P, Halas NJ (2007) Plasmonic nanostructures: artificial molecules. Acc Chem Res 40(1):53–62

    Article  PubMed  Google Scholar 

  17. Park T-H, Nordlander P (2009) On the nature of the bonding and antibonding metallic film and nanoshell plasmons. Chem Phys Lett 472(4–6):228–231

    Article  CAS  Google Scholar 

  18. Cerkoney DP, Reid C, Doty CM, Gramajo A, Campbell TD, Morales MA, Delfanazari K, Tsujimoto M, Kashiwagi T, Yamamoto T (2016) Cavity mode enhancement of terahertz emission from equilateral triangular microstrip antennas of the high-Tc superconductor Bi2Sr2CaCu2O8+ δ. J Phys Condens Matter 29(1):015601

    Article  PubMed  Google Scholar 

  19. Friedman AJ, Cook CQ, Lucas A (2023) Hydrodynamics with triangular point group. SciPost Physics 14(5):137

    Article  Google Scholar 

  20. Nelayah J, Kociak M, Stéphan O, García de Abajo FJ, Tencé M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzán LM, Colliex C (2007) Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 3(5):348–353

    Article  CAS  Google Scholar 

  21. Oh G-Y, Kim D-G, Kim SH, Ki HC, Kim TU, Choi Y-W (2014) Integrated refractometric sensor utilizing a triangular ring resonator combined with SPR. IEEE Photonics Technol Lett 26(21):2189–2192

    Article  Google Scholar 

  22. Lee C-L, Chiou H-P, Syu C-M, Wu C-C (2010) Silver triangular nanoplates as electrocatalyst for oxygen reduction reaction. Electrochem Commun 12(11):1609–1613

    Article  CAS  Google Scholar 

  23. Lee C-L, Tseng C-M, Wu R-B, Yang K-L (2008) Hollow Ag/Pd triangular nanoplate: a novel activator for electroless nickel deposition. Nanotechnology 19(21):215709

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 12274054, 12074054).

Author information

Authors and Affiliations

Authors

Contributions

Y.F. directed the project. G.Y. did the theoretical deduction. G.Y. and G.Z. analyzed the data. G.Y. wrote the manuscript. All of the authors revised the manuscript.

Corresponding author

Correspondence to Yurui Fang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, G., Zhu, G. & Fang, Y. In-Depth Analysis of Plasmon Modes on Silver Nanotriangular Flakes with Plasmon Hybridization. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02335-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02335-z

Navigation