Skip to main content
Log in

Rational design of photoelectrodes for photoelectrochemical water splitting and CO2 reduction

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Solar energy has promising potential for building sustainable society. Conversion of solar energy into solar fuels plays a crucial role in overcoming the intermittent nature of the renewable energy source. A photoelectrochemical (PEC) cell that employs semiconductor as photoelectrode to split water into hydrogen or fixing carbon dioxide (CO2) into hydrocarbon fuels provides great potential to achieve zero-carbon-emission society. A proper design of these semiconductor photoelectrodes thus directly influences the performance of the PEC cell. In this review, we investigate the strategies that have been put towards the design of efficient photoelectrodes for PEC water splitting and CO2 reduction in recent years and provide some future design directions toward next-generation PEC cells for water splitting and CO2 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Roger, M. A. Shipman, and M. D. Symes, Earth-abundant catalysts for electrochemical and photoelectro-chemical water splitting, Nat. Rev. Chem. 1(1), 0003 (2017)

    Article  Google Scholar 

  2. T. Hisatomi and K. Domen, Introductory lecture: Sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis, Faraday Discuss. 198, 11 (2017)

    Article  ADS  Google Scholar 

  3. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Solar water splitting cells, Chem. Rev. 110(11), 6446 (2010)

    Article  Google Scholar 

  4. B. Zhang, Y. H. Lui, H. Ni, and S. Hu, Bimetallic (FexNi1−x)2P nanoarrays as exceptionally efficient electrocatalysts for oxygen evolution in alkaline and neutral media, Nano Energy 38, 553 (2017)

    Article  Google Scholar 

  5. B. Zhang, Y. H. Lui, A. P. S. Gaur, B. Chen, X. Tang, Z. Qi, and S. Hu, Hierarchical FeNiP@ultrathin carbon nanoflakes as alkaline oxygen evolution and acidic hydrogen evolution catalyst for efficient water electrolysis and organic decomposition, ACS Appl. Mater. Interfaces 10(10), 8739 (2018)

    Article  Google Scholar 

  6. M. Schreier, L. Curvat, F. Giordano, L. Steier, A. Abate, S. M. Zakeeruddin, J. Luo, M. T. Mayer, and M. Grätzel, Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics, Nat. Commun. 6(1), 7326 (2015)

    Article  ADS  Google Scholar 

  7. J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. Khaja Nazeeruddin, N.-G. Park, S. David Tilley, H. J. Fan, and M. Grätzel, Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts, Science 345(6204), 1593 (2014)

    Article  ADS  Google Scholar 

  8. J. K. Stolarczyk, S. Bhattacharyya, L. Polavarapu, and J. Feldmann, Challenges and prospects in solar water splitting and CO2 reduction with inorganic and hybrid nanostructures, ACS Catal. 8(4), 3602 (2018)

    Article  Google Scholar 

  9. A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358), 37 (1972)

    Article  ADS  Google Scholar 

  10. T. Inoue, A. Fujishima, S. Konishi, and K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nature 277(5698), 637 (1979)

    Article  ADS  Google Scholar 

  11. K. Sivula, F. Le Formal, and M. Grätzel, Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes, ChemSusChem 4(4), 432 (2011)

    Article  Google Scholar 

  12. X. Shi, L. Cai, M. Ma, X. Zheng, and J. H. Park, General characterization methods for photoelectrochemical cells for solar water splitting, ChemSusChem 8(19), 3192 (2015)

    Article  Google Scholar 

  13. C. Ding, J. Shi, Z. Wang, and C. Li, Photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces, ACS Catal. 7(1), 675 (2017)

    Article  Google Scholar 

  14. A. J. Bard and M. A. Fox, Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen water splitting, Acc. Chem. Res. 28(3), 141 (1995)

    Article  Google Scholar 

  15. X. Liu, S. Inagaki, and J. Gong, Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation, Angew. Chem. Int. Ed. 55(48), 14924 (2016)

    Article  Google Scholar 

  16. A. J. Nozik and R. Memming, Physical chemistry of semiconductor—liquid interfaces, J. Phys. Chem. 100(31), 13061 (1996)

    Article  Google Scholar 

  17. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293, 2000 (2001)

    Article  Google Scholar 

  18. T. Butburee, Y. Bai, H. Wang, H. Chen, Z. Wang, G. Liu, J. Zou, P. Khemthong, G. Q. M. Lu, and L. Wang, 2D porous TiO2 single-crystalline nanostructure demonstrating high photo-electrochemical water splitting performance, Adv. Mater. 30(21), 1705666 (2018)

    Article  Google Scholar 

  19. Z. Wang, X. Li, H. Ling, C. K. Tan, L. P. Yeo, A. C. Grimsdale, and A. I. Y. Tok, 3D FTO/FTO-nanocrystal/TiO2 composite inverse opal photoanode for efficient photoelectrochemical water splitting, Small 14(20), 1800395 (2018)

    Article  Google Scholar 

  20. Q. Liu, R. Mo, X. Li, S. Yang, J. Zhong, and H. Li, Cobalt phosphate modified 3D TiO2/BiVO4 composite inverse opals photoanode for enhanced photoelectrochemical water splitting, Appl. Surf. Sci. 464, 544 (2019)

    Article  ADS  Google Scholar 

  21. G. K. Mor, K. Shankar, O. K. Varghese, and C. A. Grimes, Photoelectrochemical properties of titania nanotubes, J. Mater. Res. 19(10), 2989 (2004)

    Article  ADS  Google Scholar 

  22. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Enhanced photocleavage of water using titania nanotube arrays, Nano Lett. 5(1), 191 (2005)

    Article  ADS  Google Scholar 

  23. J. U. Kim, H. S. Han, J. Park, W. Park, J. H. Baek, J. M. Lee, H. S. Jung, and I. S. Cho, Facile and controllable surface-functionalization of TiO2 nanotubes array for highly-efficient photoelectrochemical water-oxidation, J. Catal. 365, 138 (2018)

    Article  Google Scholar 

  24. R. Zhang, M. Sun, G. Zhao, G. Yin, and B. Liu, Hierarchical Fe2O3 nanorods/TiO2 nanosheets heterostructure: Growth mechanism, enhanced visible-light photocatalytic and photoelectrochemical performances, Appl. Surf. Sci. 475, 380 (2019)

    Article  ADS  Google Scholar 

  25. S. Shen, J. Chen, M. Wang, X. Sheng, X. Chen, X. Feng, and S. S. Mao, Titanium dioxide nanostructures for photoelectrochemical applications, Prog. Mater. Sci. 98, 299 (2018)

    Article  Google Scholar 

  26. X. Song, W. Li, D. He, H. Wu, Z. Ke, C. Jiang, G. Wang, and X. Xiao, The “Midas Touch” transformation of TiO2 nanowire arrays during visible light photoelectrochemical performance by carbon/nitrogen coimplantation, Adv. Energy Mater. 8(20), 1800165 (2018)

    Article  Google Scholar 

  27. Z. Dong, D. Ding, T. Li, and C. Ning, Ni-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical water splitting, Appl. Surf. Sci. 443, 321 (2018)

    Article  ADS  Google Scholar 

  28. K. L. Hardee and A. Bard, The application of chemically vapor deposied iron oxide films to photosensitized electrolysis, J. Electrochem. Soc. 127, 1026 (1976)

    Google Scholar 

  29. K. Gelderman, L. Lee, and S. W. Donne, Flat—band potential of a semiconductor: Using the Mott—Schottky equation, J. Chem. Educ. 84(4), 685 (2007)

    Article  Google Scholar 

  30. J. H. Kennedy, Flatband potentials and donor densities of polycrystalline α-Fe2O3 determined from mott-schottky plots, J. Electrochem. Soc. 125(5), 723 (1978)

    Article  ADS  Google Scholar 

  31. I. S. Cho, H. S. Han, M. Logar, J. Park, and X. Zheng, Enhancing low-bias performance of hematite photoanodes for solar water splitting by simultaneous reduction of bulk, interface, and surface recombination pathways, Adv. Energy Mater. 6(4), 1501840 (2015)

    Article  Google Scholar 

  32. J. H. Kennedy and K. W. Frese, Photooxidation of water at α-Fe2O3 electrodes, J. Electrochem. Soc. 125(5), 709 (1978)

    Article  ADS  Google Scholar 

  33. I. Cesar, K. Sivula, A. Kay, R. Zboril, and M. Grätzel, Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting, J. Phys. Chem. C 113(2), 772 (2009)

    Article  Google Scholar 

  34. H. Jun, B. Im, J. Y. Y. Y. Y. Kim, Y. O. Im, J. W. Jang, E. S. Kim, J. Y. Kim, H. J. Kang, S. J. Hong, and J. S. Lee, Photoelectrochemical water splitting over ordered honeycomb hematite electrodes stabilized by alumina shielding, Energy Environ. Sci. 5(4), 6375 (2012)

    Article  Google Scholar 

  35. D. H. Kim, D. M. Andoshe, Y. S. Shim, C. W. Moon, W. Sohn, S. Choi, T. L. Kim, M. Lee, H. Park, K. Hong, K. C. Kwon, J. M. Suh, J. S. Kim, J. H. Lee, and H. W. Jang, Toward high-performance hematite nanotube photoanodes: Charge-transfer engineering at heterointerfaces, ACS Appl. Mater. Interfaces 8(36), 23793 (2016)

    Article  Google Scholar 

  36. L. Li, Y. Yu, F. Meng, Y. Tan, R. J. Hamers, and S. Jin, Facile solution synthesis of α-FeF3·3H2O nanowires and their conversion to α-Fe2O3 nanowires for photoelectro-chemical application, Nano Lett. 12(2), 724 (2012)

    Article  ADS  Google Scholar 

  37. L. Wang, Y. Yang, Y. Zhang, Q. Rui, B. Zhang, Z. Shen, and Y. Bi, One-dimensional hematite photoanodes with spatially separated Pt and FeOOH nanolayers for efficient solar water splitting, J. Mater. Chem. A 5(32), 17056 (2017)

    Article  Google Scholar 

  38. A. Kay, I. Cesar, and M. Grätzel, New benchmark for water photooxidation by nanostructured α-Fe2O3 films, J. Am. Chem. Soc. 128(49), 15714 (2006)

    Article  Google Scholar 

  39. J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen, and J. S. Lee, Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting, Sci. Rep. 3(1), 1 (2013)

    Google Scholar 

  40. J. Huang, G. Hu, Y. Ding, M. Pang, and B. Ma, Mn-doping and NiFe layered double hydroxide coating: Effective approaches to enhancing the performance of α-Fe2O3 in photoelectrochemical water oxidation, J. Catal. 340, 261 (2016)

    Article  Google Scholar 

  41. G. Wang, B. Wang, C. Su, D. Li, L. Zhang, R. Chong, and Z. Chang, Enhancing and stabilizing α-Fe2O3 photoanode towards neutral water oxidation: Introducing a dual-functional NiCoAl layered double hydroxide over-layer, J. Catal. 359, 287 (2018)

    Article  Google Scholar 

  42. H.-J. Ahn, A. Goswami, F. Riboni, S. Kment, A. Naldoni, S. Mohajernia, R. Zboril, and P. Schmuki, Hematite photoanode with complex nanoarchitecture providing tunable gradient doping and low onset potential for photoelectrochemical water splitting, ChemSusChem 11(11), 1873 (2018)

    Article  Google Scholar 

  43. Z. Wang, G. Liu, C. Ding, Z. Chen, F. Zhang, J. Shi, and C. Li, Synergetic effect of conjugated Ni(OH)2/IrO2 cocatalyst on titanium-doped hematite photoanode for solar water splitting, J. Phys. Chem. C 119(34), 19607 (2015)

    Article  Google Scholar 

  44. T. W. Kim and K.-S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting, Science 343(6174), 990 (2014)

    Article  ADS  Google Scholar 

  45. L. Wang, Y. Yang, Y. Zhang, Q. Rui, B. Zhang, Z. Shen, and Y. Bi, One-dimensional hematite photoanodes with spatially separated Pt and FeOOH nanolayers for efficient solar water splitting, J. Mater. Chem. A 5(32), 17056 (2017)

    Article  Google Scholar 

  46. A. Tsyganok, D. Klotz, K. D. Malviya, A. Rothschild, and D. A. Grave, Different roles of Fe1−xNixOOH cocatalyst on hematite (α-Fe2O3) photoanodes with different dopants, ACS Catal. 8(4), 2754 (2018)

    Article  Google Scholar 

  47. Y. Park, K. J. Mcdonald, and K. S. Choi, Progress in bismuth vanadate photoanodes for use in solar water oxidation, Chem. Soc. Rev. 42(6), 2321 (2013)

    Article  Google Scholar 

  48. Z. F. Huang, L. Pan, J. J. Zou, X. Zhang, and L. Wang, Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: A review on recent progress, Nanoscale 6(23), 14044 (2014)

    Article  ADS  Google Scholar 

  49. X. Lv, X. Xiao, M. Cao, Y. Bu, C. Wang, M. Wang, and Y. Shen, Efficient carbon dots/NiFe-layered double hydroxide/BiVO4 photoanodes for photoelectrochemical water splitting, Appl. Surf. Sci. 439, 1065 (2018)

    Article  ADS  Google Scholar 

  50. Y. Hu, Y. Wu, J. Feng, H. Huang, C. Zhang, Q. Qian, T. Fang, J. Xu, P. Wang, Z. Li, and Z. Zou, Rational design of electrocatalysts for simultaneously promoting bulk charge separation and surface charge transfer in solar water splitting photoelectrodes, J. Mater. Chem. A 6(6), 2568 (2018)

    Article  Google Scholar 

  51. H. T. Bui, N. K. Shrestha, S. Khadtare, C. D. Bathula, L. Giebeler, Y. Y. Noh, and S. H. Han, Anodically grown binder-free nickel hexacyanoferrate film: Toward efficient water reduction and hexacyanoferrate film based full device for overall water splitting, ACS Appl. Mater. Interfaces 9(21), 18015 (2017)

    Article  Google Scholar 

  52. Y. Yamada, K. Oyama, R. Gates, and S. Fukuzumi, High catalytic activity of heteropolynuclear cyanide complexes containing cobalt and platinum ions: Visible-light driven water oxidation, Angew. Chem. Int. Ed. 54(19), 5613 (2015)

    Article  Google Scholar 

  53. A. M. Al-Mayouf, P. Arunachalam, M. N. Shaddad, J. Labis, and M. Hezam, Fabrication of robust nanostructured (Zr)BiVO4/nickel hexacyanoferrate core/shell photoanodes for solar water splitting, Appl. Catal. B 244, 863 (2018)

    Google Scholar 

  54. T. W. Kim, and K. S. Choi, Improving stability and photoelectrochemical performance of BiVO4 photoanodes in basic media by adding a ZnFe2O4 layer, J. Phys. Chem. Lett. 7(3), 447 (2016)

    Article  Google Scholar 

  55. J. H. Baek, B. J. Kim, G. S. Han, S. W. Hwang, D. R. Kim, I. S. Cho, and H. S. Jung, BiVO4/WO3/SnO2 double-heterojunction photoanode with enhanced charge separation and visible-transparency for bias-free solar water-splitting with a perovskite solar cell, ACS Appl. Mater. Interfaces 9(2), 1479 (2017)

    Article  Google Scholar 

  56. M. T. McDowell, M. F. Lichterman, J. M. Spurgeon, S. Hu, I. D. Sharp, B. S. Brunschwig, and N. S. Lewis, Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2/Ni coatings, J. Phys. Chem. C 118(34), 19618 (2014)

    Article  Google Scholar 

  57. K. Nakaoka, J. Ueyama, and K. Ogura, Semiconductor and electrochromic properties of electrochemically deposited nickel oxide films, J. Electroanal. Chem. 571(1), 93 (2004)

    Article  Google Scholar 

  58. M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, Proc. Natl. Acad. Sci. USA 105(8), 2783 (2008)

    Article  ADS  Google Scholar 

  59. I. M. Chan, T. Y. Hsu, and F. C. Hong, Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode, Appl. Phys. Lett. 81(10), 1899 (2002)

    Article  ADS  Google Scholar 

  60. M. T. Greiner, M. G. Helander, Z. B. Wang, W. M. Tang, and Z. H. Lu, Effects of processing conditions on the work function and energy-level alignment of NiO thin films, J. Phys. Chem. C 114(46), 19777 (2010)

    Article  Google Scholar 

  61. F. P. Koffyberg and F. A. Benko, p-type NiO as a photoelectrolysis cathode, J. Electrochem. Soc. 128(11), 2476 (1981)

    Article  ADS  Google Scholar 

  62. S. Hüfner, Electronic structure of NiO and related 3d-transition-metal compounds, Adv. Phys. 43(2), 183 (1994)

    Article  ADS  Google Scholar 

  63. W. Guo, K. N. Hui, and K. S. Hui, High conductivity nickel oxide thin films by a facile sol-gel method, Mater. Lett. 92, 291 (2013)

    Article  Google Scholar 

  64. L. Cattin, B. A. Reguig, A. Khelil, M. Morsli, K. Benchouk, and J. C. Bernède, Properties of NiO thin films deposited by chemical spray pyrolysis using different precursor solutions, Appl. Surf. Sci. 254(18), 5814 (2008)

    Article  ADS  Google Scholar 

  65. K. Matsubara, S. Huang, M. Iwamoto, and W. Pan, Enhanced conductivity and gating effect of p-type Li-doped NiO nanowires, Nanoscale 6(2), 688 (2014)

    Article  ADS  Google Scholar 

  66. C. Hu, K. Chu, Y. Zhao, and W. Y. Teoh, Efficient photoelectrochemical water splitting over anodized p-type NiO porous films, ACS Appl. Mater. Interfaces 6(21), 18558 (2014)

    Article  Google Scholar 

  67. Y. Suzuki, Z. Xie, X. Lu, Y. W. Cheng, R. Amal, and Y. H. Ng, Cadmium sulfide Co-catalyst reveals the crystallinity impact of nickel oxide photocathode in photoelectrochemical water splitting, Int. J. Hydrogen Energy (2018)

  68. A. Sápi, A. Varga, G. F. Samu, D. Dobó, K. L. Juhász, B. Takács, E. Varga, Á. Kukovecz, Z. Kónya, and C. Janáky, Photoelectrochemistry by design: Tailoring the nanoscale structure of Pt/NiO composites leads to enhanced photoelectrochemical hydrogen evolution performance, J. Phys. Chem. C 121(22), 12148 (2017)

    Article  Google Scholar 

  69. P. Wu, Z. Liu, D. Chen, M. Zhou, and J. Wei, Flake-like NiO/WO3 p—n heterojunction photocathode for photoelectrochemical water splitting, Appl. Surf. Sci. 440, 1101 (2018)

    Article  ADS  Google Scholar 

  70. Y. Dong, Y. Chen, P. Jiang, G. Wang, X. Wu, R. Wu, and C. Zhang, Efficient and stable MoS2/CdSe/NiO photocathode for photoelectrochemical hydrogen generation from water, Chem. Asian J. 10(8), 1660 (2015)

    Article  Google Scholar 

  71. J. Gong, K. Sumathy, Q. Qiao, and Z. Zhou, Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends, Renew. Sustain. Energy Rev. 68, 234 (2017)

    Article  Google Scholar 

  72. Z. Ji, M. He, Z. Huang, U. Ozkan, and Y. Wu, Photostable p-type dye-sensitized photoelectrochemical cells for water reduction, J. Am. Chem. Soc. 135(32), 11696 (2013)

    Article  Google Scholar 

  73. L. Tong, A. Iwase, A. Nattestad, U. Bach, M. Weidelener, G. Götz, A. Mishra, P. Bäuerle, R. Amal, G. G. Wallace, and A. J. Mozer, Sustained solar hydrogen generation using a dye-sensitised NiO photocathode/BiVO4 tandem photo-electrochemical device, Energy Environ. Sci. 5(11), 9472 (2012)

    Article  Google Scholar 

  74. E. A. Gibson, Dye-sensitized photocathodes for H2 evolution, Chem. Soc. Rev. 46(20), 6194 (2017)

    Article  Google Scholar 

  75. X. Li, J. Wen, J. Low, Y. Fang, and J. Yu, Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel, Sci China Mater 57(1), 70 (2014)

    Article  Google Scholar 

  76. X. Chang, T. Wang, P. Yang, G. Zhang, and J. Gong, The development of cocatalysts for photoelectrochemical CO2 reduction, Adv. Mater. 1804710, 1804710 (2018)

    Google Scholar 

  77. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye, Nano-photocatalytic materials: Possibilities and challenges, Adv. Mater. 24(2), 229 (2012)

    Article  Google Scholar 

  78. K. Sun, S. Shen, Y. Liang, P. E. Burrows, S. S. Mao, and D. Wang, Enabling silicon for solar-fuel production, Chem. Rev. 114(17), 8662 (2014)

    Article  Google Scholar 

  79. R. Asahi, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293(5528), 269 (2001)

    Article  Google Scholar 

  80. W. Yang, D. Chen, H. Quan, S. Wu, X. Luo, and L. Guo, Enhanced photocatalytic properties of ZnFe2O4-doped ZnIn2S4 heterostructure under visible light irradiation, RSC Adv. 6(86), 83012 (2016)

    Article  Google Scholar 

  81. B. Liu, H. M. Chen, C. Liu, S. C. Andrews, C. Hahn, and P. Yang, Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential, J. Am. Chem. Soc. 135(27), 9995 (2013)

    Article  Google Scholar 

  82. H. Nasution, E. Purnama, S. Kosela, and J. Gunlazuardi, Photocatalytic reduction of CO on copper-doped Titania catalysts prepared by improved-impregnation method, Catal. Commun. 6(5), 313 (2005)

    Article  Google Scholar 

  83. P. Li, J. Xu, H. Jing, C. Wu, H. Peng, J. Lu, and H. Yin, Wedged N-doped CuO with more negative conductive band and lower overpotential for high efficiency photoelectric converting CO2 to methanol, Appl. Catal. B 156–157, 134 (2014)

    Article  Google Scholar 

  84. N. Sagara, S. Kamimura, T. Tsubota, and T. Ohno, Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light, Appl. Catal. B 192, 193 (2016)

    Article  Google Scholar 

  85. S. Liu, Z. R. Tang, Y. Sun, J. C. Colmenares, and Y. Xu, One-dimension-based spatially ordered architectures for solar energy conversion, Chem. Soc. Rev. 44(15), 5053 (2015)

    Article  Google Scholar 

  86. N. P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, Semiconductor nanowires — Synthesis, characterization, and applications, Adv. Mater. 26(14), 2137 (2014)

    Article  Google Scholar 

  87. J. Le Xie, C. X. Guo, and C. M. Li, Construction of one-dimensional nanostructures on graphene for efficient energy conversion and storage, Energy Environ. Sci. 7(8), 2559 (2014)

    Article  Google Scholar 

  88. A. I. Hochbaum and P. Yang, Semiconductor nanowires for energy conversion, Chem. Rev. 110(1), 527 (2010)

    Article  Google Scholar 

  89. S. K. Choi, U. Kang, S. Lee, D. J. Ham, S. M. Ji, and H. Park, Sn-Coupled p-Si nanowire arrays for solar formate production from CO2, Adv. Energy Mater. 4(11), 1301614 (2014)

    Article  Google Scholar 

  90. S. Chu, S. Fan, Y. Wang, D. Rossouw, Y. Wang, G. A. Botton, and Z. Mi, Tunable syngas production from CO2 and H2O in an aqueous photoelectrochemical cell, Angew. Chem. Int. Ed. 55(46), 14262 (2016)

    Article  Google Scholar 

  91. Q. Kong, D. Kim, C. Liu, Y. Yu, Y. Su, Y. Li, and P. Yang, Directed assembly of nanoparticle catalysts on nanowire photoelectrodes for photoelectrochemical CO2 reduction, Nano Lett. 16(9), 5675 (2016)

    Article  ADS  Google Scholar 

  92. G. Ghadimkhani, N. R. de Tacconi, W. Chanmanee, C. Janaky, and K. Rajeshwar, Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO—Cu2O semiconductor nanorod arrays, Chem. Commun. 49(13), 1297 (2013)

    Article  Google Scholar 

  93. K. Rajeshwar, N. R. De Tacconi, G. Ghadimkhani, W. Chanmanee, and C. Janáky, Tailoring copper oxide semi-conductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol, ChemPhysChem 14(10), 2251 (2013)

    Article  Google Scholar 

  94. Q. Shen, Z. Chen, X. Huang, M. Liu, and G. Zhao, High-yield and selective photoelectrocatalytic reduction of CO2 to formate by metallic copper decorated Co3O4 nanotube arrays, Environ. Sci. Technol. 49(9), 5828 (2015)

    Article  ADS  Google Scholar 

  95. M. R. Khan, T. W. Chuan, A. Yousuf, M. N. K. Chowdhury, and C. K. Cheng, Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: Study of their mechanisms to enhance photocatalytic activity, Catal. Sci. Technol. 5(5), 2522 (2015)

    Article  Google Scholar 

  96. Y. J. Jang, J. Jang, J. Lee, J. H. Kim, H. Kumagai, J. Lee, T. Minegishi, J. Kubota, K. Domen, and J. S. Lee, Selective CO production by Au coupled ZnTe/ZnO in the photoelectrochemical CO2 reduction system, Energy Environ. Sci. 8(12), 3597 (2015)

    Article  Google Scholar 

  97. J. S. DuChene, G. Tagliabue, A. J. Welch, W. H. Cheng, and H. A. Atwater, Hot hole collection and photoelectro-chemical CO2 reduction with plasmonic Au/p-GaN photocathodes, Nano Lett. 18(4), 2545 (2018)

    Article  ADS  Google Scholar 

  98. J. Hou, H. Cheng, O. Takeda, and H. Zhu, Three-dimensional bimetal-graphene-semiconductor coaxial nanowire arrays to harness charge flow for the photochemical reduction of carbon dioxide, Angew. Chem. Int. Ed. 54(29), 8480 (2015)

    Article  Google Scholar 

  99. G. Zeng, J. Qiu, Z. Li, P. Pavaskar, and S. B. Cronin, CO2 reduction to methanol on TiO2-passivated GaP photocatalysts, ACS Catal. 4(10), 3512 (2014)

    Article  Google Scholar 

  100. T. Hisatomi, J. Kubota, and K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev. 43(22), 7520 (2014)

    Article  Google Scholar 

  101. Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. D. Chidsey, and P. C. McIntyre, Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation, Nat. Mater. 10(7), 539 (2011)

    Article  ADS  Google Scholar 

  102. D. V. Esposito, I. Levin, T. P. Moffat, and A. A. Talin, H2 evolution at Si-based metal—insulator—semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover, Nat. Mater. 12(6), 562 (2013)

    Article  ADS  Google Scholar 

  103. B. Seger, T. Pedersen, A. B. Laursen, P. C. K. Vesborg, O. Hansen, and I. Chorkendorff, Using TiO2 as a conductive protective layer for photocathodic H2 evolution, J. Am. Chem. Soc. 135(3), 1057 (2013)

    Article  Google Scholar 

  104. L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst, Nat. Nanotechnol. 10(1), 84 (2015)

    Article  ADS  Google Scholar 

  105. S. Xie, Q. Zhang, G. Liu, and Y. Wang, Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures, Chem. Commun. 52(1), 35 (2016)

    Article  Google Scholar 

  106. B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, and C. P. Kubiak, Photochemical and photoelectrochemical reduction of CO2, Annu. Rev. Phys. Chem. 63(1), 541 (2012)

    Article  ADS  Google Scholar 

  107. Y. Oh, and X. Hu, Organic molecules as mediators and catalysts for photocatalytic and electrocatalytic CO2 reduction, Chem. Soc. Rev. 42(6), 2253 (2013)

    Article  Google Scholar 

  108. J. Zhao, X. Wang, Z. Xu, and J. S. C. Loo, Hybrid catalysts for photoelectrochemical reduction of carbon dioxide: A prospective review on semiconductor/metal complex co-catalyst systems, J. Mater. Chem. A 2(37), 15228 (2014)

    Article  Google Scholar 

  109. S. Bai, W. Yin, L. Wang, Z. Li, and Y. Xiong, Surface and interface design in cocatalysts for photocatalytic water splitting and CO2 reduction, RSC Advances 6(62), 57446 (2016)

    Article  Google Scholar 

  110. J. Yang, D. Wang, H. Han, and C. Li, Roles of cocatalysts in photocatalysis and photoelectrocatalysis, Acc. Chem. Res. 46(8), 1900 (2013)

    Article  Google Scholar 

  111. W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson, and S. Sun, Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO, J. Am. Chem. Soc. 135(45), 16833 (2013)

    Article  Google Scholar 

  112. Q. Lu, J. Rosen, Y. Zhou, G. S. Hutchings, Y. C. Kimmel, J. G. Chen, and F. Jiao, A selective and efficient electrocatalyst for carbon dioxide reduction, Nat. Commun. 5(1), 3242 (2014)

    Article  ADS  Google Scholar 

  113. D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang, and X. Bao, Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles, J. Am. Chem. Soc. 137(13), 4288 (2015)

    Article  Google Scholar 

  114. F. Lei, W. Liu, Y. Sun, J. Xu, K. Liu, L. Liang, T. Yao, B. Pan, S. Wei, and Y. Xie, Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction, Nat. Commun. 7(1), 12697 (2016)

    Article  ADS  Google Scholar 

  115. M. Alvarez-Guerra, S. Quintanilla, and A. Irabien, Conversion of carbon dioxide into formate using a continuous electrochemical reduction process in a lead cathode, Chem. Eng. J. 207, 278 (2012)

    Article  Google Scholar 

  116. K. P. Kuhl, E. R. Cave, D. N. Abram, and T. F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces, Energy Environ. Sci. 5(5), 7050 (2012)

    Article  Google Scholar 

  117. R. Long, Y. Li, Y. Liu, S. Chen, X. Zheng, C. Gao, C. He, N. Chen, Z. Qi, L. Song, J. Jiang, J. Zhu, and Y. Xiong, Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4, J. Am. Chem. Soc. 139(12), 4486 (2017)

    Article  Google Scholar 

  118. S. Kaneco, H. Katsumata, T. Suzuki, and K. Ohta, Photoelectrocatalytic reduction of CO2 in LiOH/methanol at metal-modified p-InP electrodes, Appl. Catal. B 64(1–2), 139 (2006)

    Article  Google Scholar 

  119. R. Hinogami, Y. Nakamura, S. Yae, and Y. Nakato, An approach to ideal semiconductor electrodes for efficient photoelectrochemical reduction of carbon dioxide by modification with small metal particles, J. Phys. Chem. B 102(6), 974 (1998)

    Article  Google Scholar 

  120. T. E. Rosser, C. D. Windle, and E. Reisner, Electro-catalytic and solar-driven CO2 reduction to CO with a molecular manganese catalyst immobilized on mesoporous TiO2, Angew. Chem. Int. Ed. 55(26), 7388 (2016)

    Article  Google Scholar 

  121. D. Guzmán, M. Isaacs, I. Osorio-Román, M. García, J. Astudillo, and M. Ohlbaum, Photoelectrochemical reduction of carbon dioxide on quantum-dot-modified electrodes by electric field directed layer-by-layer assembly methodology, ACS Appl. Mater. Interfaces 7(36), 19865 (2015)

    Article  Google Scholar 

  122. S. K. Kuk, R. K. Singh, D. H. Nam, R. Singh, J. Lee, and C. B. Park, Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade, Angew. Chem. Int. Ed. 56(14), 3827 (2017)

    Article  Google Scholar 

  123. L. Chen, Z. Guo, X. G. Wei, C. Gallenkamp, J. Bonin, E. Anxolabéhère-Mallart, K. C. Lau, T. C. Lau, and M. Robert, Molecular catalysis of the electrochemical and photochemical reduction of CO2 with earth-abundant metal complexes: Selective production of CO vs. HCOOH by switching of the metal center, J. Am. Chem. Soc. 137(34), 10918 (2015)

    Article  Google Scholar 

  124. V. S. Thoi, N. Kornienko, C. G. Margarit, P. Yang, and C. J. Chang, Visible-light photoredox catalysis: Selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene—isoquinoline complex, J. Am. Chem. Soc. 135(38), 14413 (2013)

    Article  Google Scholar 

  125. H. Takeda, H. Koizumi, K. Okamoto, and O. Ishitani, Photocatalytic CO2 reduction using a Mn complex as a catalyst, Chem. Commun. 50(12), 1491 (2014)

    Article  Google Scholar 

  126. J. Bonin, M. Robert, and M. Routier, Selective and efficient photocatalytic CO2 reduction to CO using visible light and an iron-based homogeneous catalyst, J. Am. Chem. Soc. 136(48), 16768 (2014)

    Article  Google Scholar 

  127. K. Alenezi, S. K. Ibrahim, P. Li, and C. J. Pickett, Solar fuels: Photoelectrosynthesis of CO from CO2 at p-type Si using Fe porphyrin electrocatalysts, Chem.-Eur. J. 19(40), 13522 (2013)

    Article  Google Scholar 

  128. H. Rao, L. C. Schmidt, J. Bonin, and M. Robert, Visible-light-driven methane formation from CO2 with a molecular iron catalyst, Nature 548(7665), 74 (2017)

    Article  ADS  Google Scholar 

  129. I. Taniguchi, B. Aurian-Blajeni, and J. O. Bockris, The mediation of the photoelectrochemical reduction of carbon dioxide by ammonium ions, J. Electroanal. Chem. Interfacial Electrochem. 161(2), 385 (1984)

    Article  Google Scholar 

  130. M. Szklarczyk, On the dielectric breakdown of water: An electrochemical approach, J. Electrochem. Soc. 136(9), 2512 (1989)

    Article  ADS  Google Scholar 

  131. D. H. Won, J. Chung, S. H. Park, E. Kim, and S. I. Woo, Photoelectrochemical production of useful fuels from carbon dioxide on a polypyrrole-coated p-ZnTe photocathode under visible light irradiation, J. Mater. Chem. A 3(3), 1089 (2015)

    Article  Google Scholar 

  132. A. Bachmeier, V. C. C. Wang, T. W. Woolerton, S. Bell, J. C. Fontecilla-Camps, M. Can, S. W. Ragsdale, Y. S. Chaudhary, and F. A. Armstrong, How light-harvesting semiconductors can alter the bias of reversible electrocatalysts in favor of H2 production and CO2 reduction, J. Am. Chem. Soc. 135(40), 15026 (2013)

    Article  Google Scholar 

  133. A. Bachmeier, S. Hall, S. W. Ragsdale, and F. A. Armstrong, Selective visible-light-driven CO2 reduction on a p-type dye-sensitized NiO photocathode, J. Am. Chem. Soc. 136(39), 13518 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the funding support from U.S. National Science Foundation (NSF-CMMI-1663509).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lui, Y.H., Zhang, B. & Hu, S. Rational design of photoelectrodes for photoelectrochemical water splitting and CO2 reduction. Front. Phys. 14, 53402 (2019). https://doi.org/10.1007/s11467-019-0903-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-019-0903-6

Keywords

Navigation