Skip to main content
Log in

Photon-phonon squeezing and entanglement in a cavity optomechanical system with a flying atom

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We study the quadrature squeezing and entanglement in a cavity optomechanical system (COMS). In our model, a flying atom sequentially passes through and interacts with the COMS and a Ramsey pulse zone, and subsequently the atomic state is detected. In this way, the photon-phonon squeezing and entanglement can be generated. The dynamic evolution of the squeezing and entanglement in the presence of losses are examined by using the master equation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)

    Article  ADS  Google Scholar 

  2. T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-action at the mesoscale, Science 321(5893), 1172 (2008)

    Article  ADS  Google Scholar 

  3. D. P. DiVincenzo, Quantum computation, Science 270(5234), 255 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nat. Photonics 5(4), 222 (2011)

    Article  ADS  Google Scholar 

  5. J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, Parametric normal-mode splitting in cavity optomechanics, Phys. Rev. Lett. 101(26), 263602 (2008)

    Article  ADS  Google Scholar 

  6. Z. R. Gong, H. Ian, Y. X. Liu, C. P. Sun, and F. Nori, Effective Hamiltonian approach to the Kerr nonlinearity in an optomechanical system, Phys. Rev. A 80(6), 065801 (2009)

    Article  ADS  Google Scholar 

  7. R. Ghobadi, A. R. Bahrampour, and C. Simon, Quantum optomechanics in the bistable regime, Phys. Rev. A 84(3), 033846 (2011)

    Article  ADS  Google Scholar 

  8. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. Chang, and O. Painter, Electromagnetically induced transparency and slow light with optomechanics, Nature 472(7341), 69 (2011)

    Article  ADS  Google Scholar 

  9. Y. C. Liu, B. B. Li, and Y. F. Xiao, Electromagnetically induced transparency in optical microcavities, Nanophotonics 6(5), 789 (2017)

    Article  Google Scholar 

  10. X. B. Yan, W. Z. Jia, Y. Li, J. H. Wu, X. L. Li, and H. W. Mu, Optomechanically induced amplification and perfect transparency in double-cavity optomechanics, Front. Phys. 10(3), 351 (2015)

    Article  Google Scholar 

  11. Y. C. Liu, Y. F. Xiao, X. Luan, Q. H. Gong, and C. W. Wong, Coupled cavities for motional ground-state cooling and strong optomechanical coupling, Phys. Rev. A 91(3), 033818 (2015)

    Article  ADS  Google Scholar 

  12. X. Chen, Y. C. Liu, P. Peng, Y. Zhi, and Y. F. Xiao, Cooling of macroscopic mechanical resonators in hybrid atomoptomechanical systems, Phys. Rev. A 92(3), 033841 (2015)

    Article  ADS  Google Scholar 

  13. K. Y. Zhang, L. Zhou, G. J. Dong, and W. P. Zhang, Cavity optomechanics with cold atomic gas, Front. Phys. 6(3), 237 (2011)

    Article  Google Scholar 

  14. S. Bose, K. Jacobs, and P. L. Knight, Preparation of nonclassical states in cavities with a moving mirror, Phys. Rev. A 56(5), 4175 (1997)

    Article  ADS  Google Scholar 

  15. T. S. Yin, X. Y. Lü, L. L. Zheng, M. Wang, S. Li, and Y. Wu, Nonlinear effects in modulated quantum optomechanics, Phys. Rev. A 95(5), 053861 (2017)

    Article  ADS  Google Scholar 

  16. W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, Towards quantum superpositions of a mirror, Phys. Rev. Lett. 91(13), 130401 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  17. D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Optomechanical entanglement between a movable mirror and a cavity field, Phys. Rev. Lett. 98(3), 030405 (2007)

    Article  ADS  Google Scholar 

  18. T. P. Purdy, P. L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, Strong optomechanical squeezing of light, Phys. Rev. X 3(3), 031012 (2013)

    Google Scholar 

  19. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, Entangling macroscopic oscillators exploiting radiation pressure, Phys. Rev. Lett. 88(12), 120401 (2002)

    Article  ADS  Google Scholar 

  21. X. W. Xu, Y. J. Zhao, and Y. X. Liu, Entangled-state engineering of vibrational modes in a multimembrane optomechanical system, Phys. Rev. A 88(2), 022325 (2013)

    Article  ADS  Google Scholar 

  22. M. Wang, X. Y. Lü, Y. D. Wang, J. Q. You, and Y. Wu, Macroscopic quantum entanglement in modulated optomechanics, Phys. Rev. A 94(5), 053807 (2016)

    Article  ADS  Google Scholar 

  23. X. Y. Lü, G. L. Zhu, L. L. Zheng, and Y. Wu, Entanglement and quantum superposition induced by a single photon, Phys. Rev. A 97(3), 033807 (2018)

    Article  ADS  Google Scholar 

  24. P. D. Drummond and Z. Ficek, Quantum squeezing, Springer Science & Business Media, 2013

    MATH  Google Scholar 

  25. Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. Gong, Optomechanical sensing with on-chip microcavities, Front. Phys. 8(5), 475 (2013)

    Article  Google Scholar 

  26. A. A. Clerk, F. Marquardt, and K. Jacobs, Back-action evasion and squeezing of a mechanical resonator using a cavity detector, New J. Phys. 10(9), 095010 (2008)

    Article  ADS  Google Scholar 

  27. J. Q. Liao and C. K. Law, Parametric generation of quadrature squeezing of mirrors in cavity optomechanics, Phys. Rev. A 83(3), 033820 (2011)

    Article  ADS  Google Scholar 

  28. X. Y. Lü, J. Q. Liao, L. Tian, and F. Nori, Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity, Phys. Rev. A 91(1), 013834 (2015)

    Article  ADS  Google Scholar 

  29. R. Almog, S. Zaitsev, O. Shtempluck, and E. Buks, Noise squeezing in a nanomechanical duffing resonator, Phys. Rev. Lett. 98(7), 078103 (2007)

    Article  ADS  Google Scholar 

  30. W. C. Ge and M. S. Zubairy, Entanglement of two movable mirrors with a single photon superposition state, Phys. Scr. 90(7), 074015 (2015)

    Article  ADS  Google Scholar 

  31. W. C. Ge and M. S. Zubairy, Macroscopic optomechanical superposition via periodic qubit flipping, Phys. Rev. A 91(1), 013842 (2015)

    Article  ADS  Google Scholar 

  32. J. Q. Liao, Q. Q. Wu, and F. Nori, Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system, Phys. Rev. A 89(1), 014302 (2014)

    Article  ADS  Google Scholar 

  33. J. M. Raimond, M. Brune, and S. Haroche, Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys. 73(3), 565 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. D. F. V. James and J. Jerke, Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys. 85(6), 625 (2007)

    Article  ADS  Google Scholar 

  35. W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80(10), 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  36. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator, Nat. Phys. 4(5), 415 (2008)

    Article  Google Scholar 

  37. A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit, Nat. Phys. 5(7), 509 (2009)

    Article  Google Scholar 

  38. J. Q. Liao, J. F. Huang, L. Tian, L. M. Kuang, and C. P. Sun, Generalized ultrastrong optomechanics, arXiv: 1802.09254

  39. A. Xuereb, C. Genes, and A. Dantan, Strong coupling and long-range collective interactions in optomechanical arrays, Phys. Rev. Lett. 109(22), 223601 (2012)

    Article  ADS  Google Scholar 

  40. M. A. Lemonde, N. Didier, and A. A. Clerk, Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification, Nat. Commun. 7, 11338 (2016)

    Article  ADS  Google Scholar 

  41. P. B. Li, H. R. Li, and F. L. Li, Enhanced electromechanical coupling of a nanomechanical resonator to coupled superconducting cavities, Sci. Rep. 6(1), 19065 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11574092, 61775062, 61378012, and 91121023), the National Basic Research Program of China (Grant No. 2013CB921804), and the Innovation Project of Graduate School of South China Normal University (Grant No. 2017LKXM020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Ming Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JH., Zhang, YB., Yu, YF. et al. Photon-phonon squeezing and entanglement in a cavity optomechanical system with a flying atom. Front. Phys. 14, 12601 (2019). https://doi.org/10.1007/s11467-018-0861-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0861-4

Keywords

Navigation