Skip to main content
Log in

Quantum connectivity optimization algorithms for entanglement source deployment in a quantum multi-hop network

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

At first, the entanglement source deployment problem is studied in a quantum multi-hop network, which has a significant influence on quantum connectivity. Two optimization algorithms are introduced with limited entanglement sources in this paper. A deployment algorithm based on node position (DNP) improves connectivity by guaranteeing that all overlapping areas of the distribution ranges of the entanglement sources contain nodes. In addition, a deployment algorithm based on an improved genetic algorithm (DIGA) is implemented by dividing the region into grids. From the simulation results, DNP and DIGA improve quantum connectivity by 213.73% and 248.83% compared to random deployment, respectively, and the latter performs better in terms of connectivity. However, DNP is more flexible and adaptive to change, as it stops running when all nodes are covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Kimble, The quantum internet, Nature 453(7198), 1023 (2008)

    Article  ADS  Google Scholar 

  2. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390(6660), 575 (1997)

    Article  ADS  MATH  Google Scholar 

  4. A. Karlsson and M. Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A 58(6), 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  5. F. L. Yan and T. Yan, Probabilistic teleportation via a nonmaximally entangled GHZ state, Chin. Sci. Bull. 55(10), 902 (2010)

    Article  Google Scholar 

  6. A. K. Pati, Assisted cloning and orthogonal complementing of an unknown state, Phys. Rev. A 61, 022308 (1999)

    Article  ADS  Google Scholar 

  7. P. Espoukeh and P. Pedram, Quantum teleportation through noisy channels with multi-qubit GHZ states, Quantum Inform. Process. 13(8), 1789 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. P. Agrawal and A. Pati, Perfect teleportation and superdense coding with W states, Phys. Rev. A 74(6), 062320 (2006)

    Article  ADS  Google Scholar 

  9. S. Adhikari, A. S. Majumdar, S. Roy, B. Ghosh, and N. Nayak, Teleportation via maximally and non-maximally entangled mixed states, Quantum Inf. Comput. 10(5–6), 0398 (2010)

    MathSciNet  MATH  Google Scholar 

  10. F. Verstraete and H. Verschelde, Optimal teleportation with a mixed state of two qubits, Phys. Rev. Lett. 90(9), 097901 (2003)

    Article  ADS  Google Scholar 

  11. G. Rigolin, Quantum teleportation of an arbitrary two qubit state and its relation to multipartite entanglement, Phys. Rev. A 71, 032303 (2005)

    Article  ADS  Google Scholar 

  12. S. Muralidharan and P. K. Panigrahi, Perfect teleportation, quantum state sharing and superdense coding through a genuinely entangled five-qubit state, Phys. Rev. A 77(3), 032321 (2008)

    Article  ADS  Google Scholar 

  13. D. P. Tian, Y. J. Tao, and M. Qin, Teleportation of an arbitrary two-qudit state based on the non-maximally four qudit cluster state, Sci. China G 51, 1523 (2008)

    Article  Google Scholar 

  14. J. C. Liu, Y. H. Li, and Y. Y. Nie, Controlled teleportation of an arbitrary two-particle pure or mixed state by using a five-qubit cluster state, Int. J. Theor. Phys. 49(8), 1976 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. L. Liu, Z. X. Man, and Y. J. Xia, Quantum teleportation of an arbitrary n-qubit state via non-maximally entangled state, Int. J. Quant. Inf. 5(05), 673 (2007)

    Article  MATH  Google Scholar 

  16. D. Saha and P. K. Panigrahi,N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel, Quantum Inform. Process. 11(2), 615 (2012)

    Article  MathSciNet  Google Scholar 

  17. P. X. Chen, S. Y. Zhu, and G. C. Guo, General form of genuine multipartite entanglement quantum channels for teleportation, Phys. Rev. A 74(3), 032324 (2006)

    Article  ADS  Google Scholar 

  18. A. K. Ekert, Quantum cryptography based on Bell theorem, Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, Entanglement-based quantum communication over 144 km, Nat. Phys. 3(7), 481 (2007)

    Article  Google Scholar 

  20. F. G. Deng, G. L. Long, and X. S. Liu, A Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  21. J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, Experimental quantum secure direct communication with single photons, Light Sci. Appl. 5(9), e16144 (2016)

    Article  Google Scholar 

  22. M. Cao, S. Q. Zhu, and J. X. Fang, Teleportation of n-particle state via n pairs of EPR channels, Commum. Theor. Phys. 41(5), 689 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. P. R. Tapster, J. G. Rarity, and P. C. M. Owens, Violation of Bell’s inequality over 4 km of optical fiber, Phys. Rev. Lett. 73(14), 1923 (1994)

    Article  ADS  Google Scholar 

  24. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Violation of Bell inequalities by photons more than 10 km apart, Phys. Rev. Lett. 81(17), 3563 (1998)

    Article  ADS  Google Scholar 

  25. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Quantum repeaters: The role of imperfect local operations in quantum communication, Phys. Rev. Lett. 81(26), 5932 (1998)

    Article  ADS  Google Scholar 

  26. M. Aspelmeyer, H. R. Böhm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G. Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, and A. Zeilinger, Long-distance free-space distribution of quantum entanglement, Science 301(5633), 621 (2003)

    Article  ADS  Google Scholar 

  27. C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, Experimental free-space distribution of entangled photon pairs over 13 km: Towards satellite-based global quantum communication, Phys. Rev. Lett. 94(15), 150501 (2005)

    Article  ADS  Google Scholar 

  28. A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, High-fidelity transmission of entanglement over a high-loss freespace channel, Nat. Phys. 5(6), 389 (2009)

    Article  Google Scholar 

  29. D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 80(6), 1121 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. X. M. Jin, J. G. Ren, B. Yang, Z. H. Yi, F. Zhou, X. F. Xu, S. K. Wang, D. Yang, Y. F. Hu, S. Jiang, T. Yang, H. Yin, K. Chen, C. Z. Peng, and J. W. Pan, Experimental free-space quantum teleportation, Nat. Photonics 4(6), 376 (2010)

    Article  ADS  Google Scholar 

  31. J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, Quantum teleportation and entanglement distribution over 100-kilometre free-space channels, Nature 488(7410), 185 (2012)

    Article  ADS  Google Scholar 

  32. X. T. Yu, Z. C. Zhang, and J. Xu, Distributed wireless quantum communication networks with partially entangled pairs, Chin. Phys. B 23, 010303 (2014)

    Article  ADS  Google Scholar 

  33. L. H. Shi, X. T. Yu, X. F. Cai, Y. X. Gong, and Z. C. Zhang, Quantum information transmission in the quantum wireless multihop network based on Werner state, Chin. Phys. B 24(5), 050308 (2015)

    Article  ADS  Google Scholar 

  34. X. F. Cai, X. T. Yu, L. H. Shi, and Z. C. Zhang, Partially entangled states bridge in quantum teleportation, Front. Phys. 9(5), 646 (2014)

    Article  Google Scholar 

  35. K. Wang, X. T. Yu, S. L. Lu, and Y. X. Gong, Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation, Phys. Rev. A 89, 022329 (2014)

    Article  ADS  Google Scholar 

  36. P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11(4), 110303 (2016)

    Article  Google Scholar 

  37. Z. Z. Zou, X. T. Yu, Y. X. Gong, and Z. C. Zhang, Multihop teleportation of two-qubit state via the composite GHZ-Bell channel, Phys. Lett. A 381(2), 76 (2017)

    Article  ADS  MATH  Google Scholar 

  38. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  Google Scholar 

  39. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett. 76(5), 722 (1996)

    Article  ADS  Google Scholar 

  40. J. W. Pan, C. Simon, Č Brukner, and A. Zeilinger, Entanglement purification for quantum communication, Nature 410(6832), 1067 (2001)

    Article  ADS  Google Scholar 

  41. F. G. Deng, One-step error correction for multipartite polarization entanglement, Phys. Rev. A 83(6), 062316 (2011)

    Article  ADS  Google Scholar 

  42. Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, Efficient N-particle W state concentration with different parity check gates, Sci. China Phys. Mech. Astron. 58(6), 1 (2015)

    Article  Google Scholar 

  43. L. Zhou and Y. B. Sheng, Purification of logic-qubit entanglement, Sci. Rep. 6(1), 28813 (2016)

    Article  ADS  Google Scholar 

  44. G. Boudreau, J. Panicker, N. Guo, R. Chang, N. Wang, and S. Vrzic, Interference coordination and cancellation for 4G networks, IEEE Commun. Mag. 47(4), 74 (2009)

    Article  Google Scholar 

  45. E. Q. V. Martins and M. M. B. Pascoal, A new implementation of Yen’s ranking loopless paths algorithm, Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 1(2), 121 (2003)

    MATH  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant Nos. 61571105 and 61601120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Tao Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, ZZ., Yu, XT. & Zhang, ZC. Quantum connectivity optimization algorithms for entanglement source deployment in a quantum multi-hop network. Front. Phys. 13, 130202 (2018). https://doi.org/10.1007/s11467-017-0721-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0721-7

Keywords

Navigation