Skip to main content
Log in

Chaotic-periodic transition in a two-sided minority game

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Phase transitions are being used increasingly to probe the collective behaviors of social human systems. In this study, we propose a different way of investigating such transitions in a human system by establishing a two-sided minority game model. A new type of agents who can actively transfer resources are added to our artificial bipartite resource-allocation market. The degree of deviation from equilibria is characterized by the entropy-like quantity of market complexity. Under different threshold values, Q th , two phases are found by calculating the exponents of the associated power spectra. For large values of Q th , the general motion of strategies for the agents is relatively periodic whereas for low values of Q th , the motion becomes chaotic. The transition occurs abruptly at a critical value of Q th . Our simulation results were also tested based on human experiments. The results of this study suggest that a chaotic-periodic transition related to the quantity of market information should exist in most bipartite markets, thereby allowing better control of such a transition and providing a better understanding of the endogenous emergence of business cycles from the perspective of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Challet and Y. C. Zhang, Emergence of cooperation and organization in an evolutionary game, Physica A 246(3–4), 407 1997

    Article  ADS  Google Scholar 

  2. L. X. Zhong, D. F. Zheng, B. Zheng, and P. M. Hui, Effects of contrarians in the minority game, Phys. Rev. E 72(2), 026134 2005

    Article  ADS  Google Scholar 

  3. O. P. Hauser, D. G. Rand, A. Peysakhovich, and M. A. Nowak, Cooperating with the future, Nature 511(7508), 220 2014

    Article  ADS  Google Scholar 

  4. I. Erev and A. E. Roth, Maximization, learning, and economic behavior, Proc. Natl. Acad. Sci. USA 111(Suppl 3), 10818 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Biswas, A. Ghosh, A. Chatterjee, T. Naskar, and B. K. Chakrabarti, Continuous transition of social efficiencies in the stochastic-strategy minority game, Phys. Rev. E 85(3), 031104 2012

    Article  ADS  Google Scholar 

  6. B. Zheng, T. Qiu, and F. Ren, Two-phase phenomena, minority games, and herding models, Phys. Rev. E 69(4), 046115 2004

    Article  ADS  Google Scholar 

  7. M. Anghel, Z. Toroczkai, K. E. Bassler, and G. Korniss, Competition-driven network dynamics: Emergence of a scale-free leadership structure and collective efficiency, Phys. Rev. Lett. 92(5), 058701 2004

    Article  ADS  Google Scholar 

  8. D. Challet and M. Marsili, Criticality and market efficiency in a simple realistic model of the stock market, Phys. Rev. E 68(3), 036132 2003

    Article  ADS  Google Scholar 

  9. D. Challet, M. Marsili, and Y. C. Zhang, Stylized facts of financial markets and market crashes in minority games, Physica A 294(3–4), 514 2001

    Article  ADS  MATH  Google Scholar 

  10. W. Wang, Y. Chen, and J. Huang, Heterogeneous preferences, decision-making capacity, and phase transitions in a complex adaptive system, Proc. Natl. Acad. Sci. USA 106(21), 8423 2009

    Article  ADS  Google Scholar 

  11. J. P. Huang, Experimental econophysics: Complexity, selforganization, and emergent properties, Phys. Rep. 564, 1 2014

    Article  ADS  Google Scholar 

  12. Y. Liang, K. N. An, G. Yang, and J. P. Huang, Contrarian behavior in a complex adaptive system, Phys. Rev. E 87(1), 012809 2013

    Article  ADS  Google Scholar 

  13. G. Yang, W. Z. Zheng, and J. P. Huang, Partial information, market efficiency, and anomalous continuous phase transition, J. Stat. Mech. 2014(4), P04017 2014

    Article  MathSciNet  Google Scholar 

  14. L. Zhao, G. Yang, W. Wang, Y. Chen, J. P. Huang, H. Ohashi, and H. E. Stanley, Herd behavior in a complex adaptive system, Proc. Natl. Acad. Sci. USA 108(37), 15058 2011

    Article  ADS  Google Scholar 

  15. W. Z. Zheng, Y. Liang, and J. P. Huang, Equilibrium state and non-equilibrium steady state in an isolated human system, Front. Phys. 9(1), 128 2014

    Article  Google Scholar 

  16. J. C. Rochet and J. Tirole, Platform competition in twosided markets, J. Eur. Econ. Assoc. 1(4), 990 2003

    Article  Google Scholar 

  17. G. G. Parker and M. W. Van Alstyne, Two-sided network effects: A theory of information product design, Manage. Sci. 51(10), 1494 2005

    Article  Google Scholar 

  18. Y. Zhang and W. H. Wan, States and transitions in mixed networks, Front. Phys. 9(4), 523 2014

    Article  MathSciNet  Google Scholar 

  19. Y. H. Chen, W. Wu, G. C. Liu, H. S. Tao, and W. M. Liu, Quantum phase transition of cold atoms trapped in optical lattices, Front. Phys. 7(2), 223 2012

    Article  Google Scholar 

  20. Y. Liang and J. P. Huang, Robustness of critical points in a complex adaptive system: Effects of hedge behavior, Front. Phys. 8(4), 461 2013

    Article  Google Scholar 

  21. B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10(4), 422 1968

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett. 59(4), 381 1987

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Magdziarz, A. Weron, K. Burnecki, and J. Klafter, Fractional Brownian motion versus the continuous-time random walk: a simple test for subdiffusive dynamics, Phys. Rev. Lett. 103(18), 180602 2009

    Article  ADS  Google Scholar 

  24. R. Metzler, J. H. Jeon, A. G. Cherstvy, and E. Barkai, Anomalous diffusion models and their properties: Nonstationarity, non-ergodicity, and ageing at the centenary of single particle tracking, Phys. Chem. Chem. Phys. 16(44), 24128 2014

    Article  Google Scholar 

  25. S. Gualdi, J. P. Bouchaud, G. Cencetti, M. Tarzia, and F. Zamponi, Endogenous crisis waves: Stochastic model with synchronized collective behavior, Phys. Rev. Lett. 114(8), 088701 2015

    Article  ADS  Google Scholar 

  26. I. Bashkirtseva, T. Ryazanova, and L. Ryashko, Confidence domains in the analysis of noise-induced transition to chaos for Goodwin model of business cycles, Int. J. Bifurcation Chaos 24(08), 1440020 2014

    Article  ADS  MathSciNet  Google Scholar 

  27. J. P. Huang, Experimental Econophysics: Properties and Mechanisms of Laboratory Markets, Berlin Heidelberg: Springer, 2015

    Book  Google Scholar 

  28. L. Putterman, Behavioural economics: A caring majority secures the future, Nature 511(7508), 165 2014

    Article  ADS  Google Scholar 

  29. T. Jia, B. Jiang, K. Carling, M. Bolin, and Y. F. Ban, An empirical study on human mobility and its agent-based modeling, J. Stat. Mech. 2012(11), P11024 2012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Hui Li or Ji-Ping Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XH., Yang, G. & Huang, JP. Chaotic-periodic transition in a two-sided minority game. Front. Phys. 11, 118901 (2016). https://doi.org/10.1007/s11467-016-0552-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0552-y

Keywords

Navigation