Skip to main content
Log in

Complex dynamics of knowledgeable monopoly models with gradient mechanisms

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study explores the dynamics of two monopoly models with knowledgeable players. The first model was initially introduced by Naimzada and Ricchiuti, while the second one is simplified by the famous monopoly model of Puu. We employ several tools based on symbolic computations to analyze the local stability and bifurcations of the two models. To the best of our knowledge, the complete stability conditions of the second model are obtained for the first time. We investigate periodic solutions and their stability. Most importantly, we discover that the topological structure of the parameter space of the second model is much more complex than that of the first one. Specifically, in the first model, the parameter region for the stability of any periodic orbits with a fixed order constitutes a connected set. In the second model, however, the stability regions for the 3-cycle, 4-cycle, and 5-cycle orbits are disconnected sets formed by many disjoint portions. Furthermore, we find that the basins of the two stable equilibria in the second model are disconnected and have complicated topological structures. In addition, the existence of chaos in the sense of Li-Yorke is rigorously proved by finding snapback repellers and 3-cycle orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The method of triangular decomposition can be viewed as an extension of the method of Gaussian elimination. The main idea of both methods is to transform a system into a triangular form. However, the triangular decomposition method is available for polynomial systems, while the Gaussian elimination method is just for linear systems. Refer to [37,38,39,40] for more details.

References

  1. Cournot, A.A.: Recherches sur les Principes Mathématiques de la Théorie des Richesses. L. Hachette, Paris (1838)

    MATH  Google Scholar 

  2. Li, X., Su, L.: A heterogeneous duopoly game under an isoelastic demand and diseconomies of scale. Fractal Fr. 6(8), 459 (2022)

    Google Scholar 

  3. Ma, J., Wu, K.: Complex system and influence of delayed decision on the stability of a triopoly price game model. Nonlinear Dyn. 73(3), 1741–1751 (2013)

    MathSciNet  Google Scholar 

  4. Matouk, A.E., Elsadany, A.A., Xin, B.: Neimark–Sacker bifurcation analysis and complex nonlinear dynamics in a heterogeneous quadropoly game with an isoelastic demand function. Nonlinear Dyn. 89(4), 2533–2552 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Matsumoto, A., Nonaka, Y., Szidarovszky, F.: Nonlinear dynamics and adjunct profits in two boundedly rational models of monopoly. Commun. Nonlinear Sci. Numer. Simul. 116, 106868 (2022)

    MathSciNet  MATH  Google Scholar 

  6. Naimzada, A.K., Ricchiuti, G.: Complex dynamics in a monopoly with a rule of thumb. Appl. Math. Comput. 203(2), 921–925 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Puu, T.: The chaotic monopolist. Chaos Solitons Fract. 5(1), 35–44 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Al-Hdaibat, B., Govaerts, W., Neirynck, N.: On periodic and chaotic behavior in a two-dimensional monopoly model. Chaos Solitons Fract. 70, 27–37 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Li, X., Li, B., Liu, L.: Stability and dynamic behaviors of a limited monopoly with a gradient adjustment mechanism. Chaos Solitons Fract. 168, 113106 (2023)

    MathSciNet  Google Scholar 

  10. Askar, S.S.: On complex dynamics of monopoly market. Econ. Model. 31, 586–589 (2013)

    Google Scholar 

  11. Sarafopoulos, G.: Complexity in a monopoly market with a general demand and quadratic cost function. Proc. Econ. Fin. 19, 122–128 (2015)

    Google Scholar 

  12. Cavalli, F., Naimzada, A.: Effect of price elasticity of demand in monopolies with gradient adjustment. Chaos Solitons Fract. 76, 47–55 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Elsadany, A.A., Awad, A.M.: Dynamical analysis of a delayed monopoly game with a log-concave demand function. Oper. Res. Lett. 44(1), 33–38 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Caravaggio, A., Sodini, M.: Monopoly with differentiated final goods and heterogeneous markets. Chaos Solitons Fract. 130, 109429 (2020)

    MathSciNet  Google Scholar 

  15. Tramontana, F.: When a boundedly rational monopolist meets consumers with reference dependent preferences. J. Econ. Behav. Organ. 184, 30–45 (2021)

    Google Scholar 

  16. Matsumoto, A., Szidarovszky, F.: Nonlinear delay monopoly with bounded rationality. Chaos Solitons Fract. 45(4), 507–519 (2012)

    Google Scholar 

  17. Gori, L., Guerrini, L., Sodini, M.: Different modelling approaches for time lags in a monopoly. In: Essays in Economic Dynamics, pp. 81–98. Springer, New York (2016)

    MATH  Google Scholar 

  18. Guerrini, L., Pecora, N., Sodini, M.: Effects of fixed and continuously distributed delays in a monopoly model with constant price elasticity. Decis. Econ. Fin. 41(2), 239–257 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Agiza, H.N., Hegazi, A.S., Elsadany, A.A.: Complex dynamics and synchronization of a duopoly game with bounded rationality. Math. Comput. Simul. 58(2), 133–146 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Offerman, T., Potters, J., Sonnemans, J.: Imitation and belief learning in an oligopoly experiment. Rev. Econ. Stud. 69(4), 973–997 (2002)

    MATH  Google Scholar 

  21. Naimzada, A.K., Sbragia, L.: Oligopoly games with nonlinear demand and cost functions: two boundedly rational adjustment processes. Chaos Solitons Fract. 29(3), 707–722 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Chai, C., Xiao, T., Feng, Z.: Evolution of revenue preference for competing firms with nonlinear inverse demand. J. Ind. Manag. Optim. 18(4), 2351–2367 (2022)

    MathSciNet  MATH  Google Scholar 

  23. Zhou, W., Liu, H.: Complexity analysis of dynamic R &D competition between high-tech firms. Commun. Nonlinear Sci. Numer. Simul. 118, 107029 (2023)

    MathSciNet  MATH  Google Scholar 

  24. Matsumoto, A., Szidarovszky, F.: Controlling non-point source pollution in Cournot oligopolies with hyperbolic demand. SN Bus. Econ. 1(2), 38 (2021)

    Google Scholar 

  25. Caravaggio, A., Gori, L., Sodini, M.: Endogenous preferences in a dynamic Cournot duopoly. Chaos Solitons Fract. 161, 112303 (2022)

    MathSciNet  Google Scholar 

  26. Cerboni Baiardi, L., Lamantia, F.: Oligopoly dynamics with isoelastic demand: the joint effects of market saturation and strategic delegation. Chaos Solitons Fract. 158, 112057 (2022)

    MathSciNet  Google Scholar 

  27. Merlone, U.: Cournot oligopoly when the competitors operate under capital constraints. Chaos Solitons Fract. 160, 112154 (2022)

    MathSciNet  MATH  Google Scholar 

  28. Li, X., Wang, D.: Computing equilibria of semi-algebraic economies using triangular decomposition and real solution classification. J. Math. Econ. 54, 48–58 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Kubler, F., Schmedders, K.: Competitive equilibria in semi-algebraic economies. J. Econ. Theory 145(1), 301–330 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Kubler, F., Schmedders, K.: Tackling multiplicity of equilibria with Gröbner bases. Oper. Res. 58(4–Part–2), 1037–1050 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Mishra, B.: Algorithmic Algebra. Springer-Verlag, New York (1993)

    MATH  Google Scholar 

  32. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991)

    MathSciNet  MATH  Google Scholar 

  33. Xia, B., Hou, X.: A complete algorithm for counting real solutions of polynomial systems of equations and inequalities. Comput. Math. Appl. 44(5–6), 633–642 (2002)

    MathSciNet  MATH  Google Scholar 

  34. Collins, G.E., Loos, R.: Real zeros of polynomials. In: Buchberger, B., Collins, G., Loos, R. (eds.) Computer Algebra: Symbolic and Algebraic Computation, pp. 83–94. Springer, New York (1983)

    Google Scholar 

  35. Sturmfels, B.: Solving Systems of Polynomial Equations. American Mathematical Society, RI, Providence (2002)

    MATH  Google Scholar 

  36. Yang, L., Hou, X., Xia, B.: A complete algorithm for automated discovering of a class of inequality-type theorems. Sci. China Series F 44, 33–49 (2001)

    MathSciNet  MATH  Google Scholar 

  37. Wu, W.-T.: Basic principles of mechanical theorem proving in elementary geometries. J. Autom. Reason. 2(3), 221–252 (1986)

    MATH  Google Scholar 

  38. Li, X., Mou, C., Wang, D.: Decomposing polynomial sets into simple sets over finite fields: the zero-dimensional case. Comput. Math. Appl. 60(11), 2983–2997 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Jin, M., Li, X., Wang, D.: A new algorithmic scheme for computing characteristic sets. J. Symb. Comput. 50, 431–449 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Wang, D.: Elimination Methods. Texts and Monographs in Symbolic Computation, Springer, New York (2001)

    MATH  Google Scholar 

  41. Li, T.-Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82(10), 985–992 (1975)

    MathSciNet  MATH  Google Scholar 

  42. Li, B., Liang, H., Shi, L., He, Q.: Complex dynamics of Kopel model with nonsymmetric response between oligopolists. Chaos Solitons Fract. 156, 111860 (2022)

    MathSciNet  MATH  Google Scholar 

  43. Marotto, F.R.: Snap-back repellers imply chaos in \(R_n\). J. Math. Anal. Appl. 63(1), 199–223 (1978)

    MathSciNet  MATH  Google Scholar 

  44. Li, C., Chen, G.: On the Marotto–Li–Chen theorem and its application to chaotification of multi-dimensional discrete dynamical systems. Chaos Solitons Fract. 18(4), 807–817 (2003)

    MathSciNet  MATH  Google Scholar 

  45. Huang, B., Niu, W.: Analysis of snapback repellers using methods of symbolic computation. Int. J. Bifurc. Chaos 29(04), 1950054 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Blank, S.C.: “Chaos’’ in futures markets? A nonlinear dynamical analysis. J. Future Markets 11(6), 711–728 (1991)

    Google Scholar 

  47. Lichtenberg, A.J., Ujihara, A.: Application of nonlinear mapping theory to commodity price fluctuatuions. J. Econ. Dyn. Control 13(2), 225–246 (1989)

    MATH  Google Scholar 

  48. Frank, M., Stengos, T.: Measuring the strangeness of gold and silver rates of return. Rev. Econ. Stud. 56(4), 553–567 (1989)

    Google Scholar 

  49. Gupta, V., Mittal, M., Mittal, V.: R-peak detection using chaos analysis in standard and real time ECG databases. IRBM 40(6), 341–354 (2019)

    Google Scholar 

  50. Gupta, V., Mittal, M., Mittal, V.: R-peak detection based chaos analysis of ECG signal. Analog Integr. Circ. Sig. Process 102(3), 479–490 (2020)

    Google Scholar 

  51. Gupta, V., Mittal, M., Mittal, V.: Chaos theory and ARTFA: emerging tools for interpreting ECG signals to diagnose cardiac arrhythmias. Wireless Pers. Commun. 118(4), 3615–3646 (2021)

    Google Scholar 

  52. Azizi, T., Alali, B., Kerr, G.: Discrete Dynamical Systems: With Applications in Biology. Book Publisher International, London (2020)

    Google Scholar 

  53. Peng, Z., Yu, W., Wang, J., Wang, J., Chen, Y., He, X., Jiang, D.: Dynamic analysis of seven-dimensional fractional-order chaotic system and its application in encrypted communication. J. Ambient. Intell. Humaniz. Comput. 11(11), 5399–5417 (2020)

  54. Davenport, J., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symb. Comput. 5(1–2), 29–35 (1988)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Bo Huang for the beneficial discussions and are grateful to the anonymous referees for their helpful comments. This work has been supported by Philosophy and Social Science Foundation of Guangdong under Grant No. GD21CLJ01, National Natural Science Foundation of China under Grant No. 11601023, and Beijing Natural Science Foundation under Grant No. 1212005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Niu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{aligned} SP&= (972K^8 +19440K^7 +127575K^6 +162000K^5 \\&\quad -1552500K^4 -6412500K^3 -5062500K^2 \\&\quad +23437500K+67187500 )( 8503056K^{12} \\&\quad +191318760K^{11}+1523464200K^{10}\\&\quad +3754532250K^9-14134854375K^8 \\&\quad -101982543750K^7 -146939062500K^6 \\&\quad +399469218750K^5 +1522072265625K^4 \\&\quad +261457031250K^3-4576816406250K^2 \\&\quad -1938867187500K +13981445312500),\\ C_4(K,M)&= K^{8} M^{8} +( -126K^{8} -210K^{7}) M^{7} \\&\quad +(6660K^{8} +21300K^{7} +17800K^{6}) M^{6} \\&\quad +( -192024K^{8} -874800K^{7} \\&\quad -1382400K^{6} -731000K^{5}) M^{5} \\&\quad +(3285360K^{8} +18688320K^{7} \\&\quad +41115600K^{6} +39438000K^{5}\\&\quad +13350000K^{4}) M^{4} \\&\quad +( -33957792K^{8} -221940000K^{7}\\&\quad -588016800K^{6} -728172000K^{5} \\&\quad -379740000K^{4} -45500000K^{3}) M^{3} \\&\quad +(206172864K^{8} +1453101120K^{7} \\&\quad +4191652800K^{6} +5433912000K^{5} \\&\quad +2183760000K^{4} -1105200000K^{3} \\&\quad -478000000K^{2}) M^{2} +( -672686208K^{8} \\&\quad -4870886400K^{7} -14246409600K^{6}\\&\quad -16185744000K^{5} +2054160000K^{4} \\&\quad +13262400000K^{3}-7632000000K^{2} \\&\quad -11520000000K) M +906992640K^{8} \\&\quad +6500113920K^{7}+18223833600K^{6} \\&\quad +13351392000K^{5} -25284960000K^{4}\\&\quad -27302400000K^{3} +65376000000K^{2} \\&\quad +30720000000K -102400000000. \end{aligned}$$

Appendix B

Table 5 List of abbreviations
Table 6 List of symbols in model construction

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Fu, J. & Niu, W. Complex dynamics of knowledgeable monopoly models with gradient mechanisms. Nonlinear Dyn 111, 11629–11654 (2023). https://doi.org/10.1007/s11071-023-08414-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08414-w

Keywords

Navigation