Skip to main content
Log in

Superconductivity of topological matters induced via pressure

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

By applying pressure on the topological insulator Bi2Te3 single crystal, superconducting phase was found without a crystal structure phase transition. The new superconducting phase is under the pressure range of 3 GPa to 6 GPa. The high pressure Hall effect measurements indicated that the superconductivity caused by bulk hole pockets. The high pressure structure investigations with synchrotron X-ray diffraction indicated that the superconducting phase is of similar structure to that of ambient phase structure with only slight change with lattice parameter and internal atomic position. The topological band structures indicate the superconducting phase under high pressure remained topologically nontrivial. The results suggested that topological superconductivity can be realized in Bi2Te3 due to the proximity effect between superconducting bulk states and Diractype surface states. We also discussed the possibility that the bulk state could be a topological superconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science, 2006, 314(5806): 1757

    Article  ADS  Google Scholar 

  2. L. Fu and C. L. Kane, Phys. Rev. B, 2007, 76(4): 045302

    Article  ADS  Google Scholar 

  3. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science, 2007, 318(5851): 766

    Article  ADS  Google Scholar 

  4. D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature, 2008, 452: 970

    Article  ADS  Google Scholar 

  5. Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science, 2009, 325(5937): 178

    Article  ADS  Google Scholar 

  6. H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nat. Phys., 2009, 5: 438

    Article  Google Scholar 

  7. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys., 2009, 5: 398

    Article  Google Scholar 

  8. J. C. Y. Teo, L. Fu, and C. L. Kane, Phys. Rev. B, 2008, 78(4): 045426

    Article  ADS  Google Scholar 

  9. W. Zhang, R. Yu, H. J. Zhang, X. Dai, and Z. Fang, New J. Phys., 2010, 12: 065013

    Article  ADS  Google Scholar 

  10. Y. L. Chen, Z. K. Liu J. G. Analytis, J. H. Chu, H. J. Zhang, B. H. Yan, S. K. Mo, R. G. Moore, D. H. Lu, I. R. Fisher, S. C. Zhang, Z. Hussain, and Z. X. Shen, Phys. Rev. Lett., 2010, 105(26): 266401

    Article  ADS  Google Scholar 

  11. X. L. Qi and S. C. Zhang, arXiv:1008.2026v1, 2010

  12. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys., 2010, 82(4): 3045

    Article  ADS  Google Scholar 

  13. B. H. Yan, C. X. Liu, H. J. Zhang, C. Y. Yam, X. L. Qi, T. Frauenheim, and S. C. Zhang, Europhys. Lett., 2010, 90(3): 37002

    Article  ADS  Google Scholar 

  14. D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Phys. Rev. Lett., 2009, 103(14): 146401

    Article  ADS  Google Scholar 

  15. X. L. Qi, R. D. Li, J. D. Zang, and S. C. Zhang, Science, 2009, 323(5918): 1184

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B, 2008, 78(19): 195424

    Article  ADS  Google Scholar 

  17. L. Fu and C. L. Kane, Phys. Rev. Lett., 2008, 100(9): 096407

    Article  ADS  Google Scholar 

  18. X. L. Qi, T. L. Hughes, S. Raghu, and S. C. Zhang, Phys. Rev. Lett., 2009, 102(18): 187001

    Article  ADS  Google Scholar 

  19. A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B, 2008, 78(19): 195125

    Article  ADS  Google Scholar 

  20. S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, New J. Phys., 2010, 12: 065010

    Article  ADS  Google Scholar 

  21. Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J. Cava, Phys. Rev. Lett., 2010, 104(5): 057001

    Article  ADS  Google Scholar 

  22. L. A. Wray, S. Y. Xu, Y. Xia, Y. S. Hor, D. Qian, A. V. Fedorov, H. Lin, A. Bansil, R. J. Cava, and M. Z. Hasan, Nat. Phys., 2010, 6: 855

    Article  Google Scholar 

  23. J. L. Zhang, S. J. Zhang, H. M. Weng, W. Zhang, L. X. Yang, Q. Q. Liu, S. M. Feng, X. C. Wang, R. C. Yu, L. Z. Cao, L. Wang, W. G. Yang, H. Z. Liu, W. Y. Zhao, S. C. Zhang, X. Dai, Z. Fang, and C. Q. Jin, Proc. Natl. Acad. Sci. USA, 2011, 108(1): 24

    Article  ADS  Google Scholar 

  24. M. Einaga, Y. Tanabe, A. Nakayama, A. Ohmura, F. Ishikawa, and Y. Yamada, J. Phys.: Confer. Ser., 2010, 215(1): 012036

    Article  ADS  Google Scholar 

  25. C. Zhang et al., Phys. Rev. B, 2011

  26. N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev., 1966, 147: 295

    Article  ADS  Google Scholar 

  27. S. V. Ovsyannikov, V. V. Shchennikov, G. V. Vorontsov, A. Y. Manakov, A. Y. Likhacheva, and V. A. Kulbachinskii, J. Appl. Phys., 2008, 104: 053713

    Article  ADS  Google Scholar 

  28. A. Nakayama, M. Einaga, Y. Tanabe, S. Nakano, F. Ishikawa, and Y. Yamada, High Pressure Research, 2009, 29: 245

    Article  ADS  Google Scholar 

  29. M. Einaga, A. Ohmura, A. Nakayama, F. Ishikawa, Y. Yamada, and S. Nakano, Phys. Rev. B, 2011, 83(9): 092102

    Article  ADS  Google Scholar 

  30. B. H. Toby, Journal of Applied Crystallography, 2001, 34: 210

    Article  Google Scholar 

  31. X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B, 2010, 81(13): 134508

    Article  ADS  Google Scholar 

  32. L. Fu and E. Berg, Phys. Rev. Lett., 2010, 105(9): 097001

    Article  ADS  Google Scholar 

  33. H. K. Mao and P. M. Bell, Science, 1976, 191(4229): 851

    Article  ADS  Google Scholar 

  34. S. J. Zhang, X. C. Wang, R. Sammynaiken, J. S. Tse, L. X. Yang, Z. Li, Q. Q. Liu, S. Desgreniers, Y. Yao, H. Z. Liu, and C. Q. Jin, Phys. Rev. B, 2009, 80(1): 014506

    Article  ADS  Google Scholar 

  35. S. J. Zhang, X. C. Wang, Q. Q. Liu, Y. X. Lv, X. H. Yu, Z. J. Lin, Y. S. Zhao, L. Wang, Y. Ding, H. K. Mao, and C. Q. Jin, Europhys. Lett., 2009, 88(4): 47008

    Article  ADS  Google Scholar 

  36. http://www.openmx-square.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-qing Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Jl., Zhang, Sj., Weng, Hm. et al. Superconductivity of topological matters induced via pressure. Front. Phys. 7, 193–199 (2012). https://doi.org/10.1007/s11467-011-0217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-011-0217-9

Keywords

Navigation