Skip to main content
Log in

Nash inequality for diffusion processes associated with Dirichlet distributions

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

For any N ⩾ 2 and α = (α1,…, αN+1) ∈ (0, ∞)N+1, let µa(n) be the Dirichlet distribution with parameter α on the set Δ(N):= [x ∈ [0,1]N: Σ1iNxi ⩽ ]. The multivariate Dirichlet diffusion is associated with the Dirichlet form

$${\mathcal E}_\alpha ^{(N)}(f,f): = \sum\limits_{n = 1}^N {\int_{{\Delta ^{(N)}}} {\left( {1 - \sum\limits_{1 \leqslant i \leqslant N} {{x_i}} } \right){x_n}{{({\partial _n}f)}^2}(x)\mu _\alpha ^{(N)}} (dx)}$$

with Domain \({\mathcal D}({\mathcal E}_\alpha ^{(N)})\) being the closure of C1(N)). We prove the Nash inequality

$$\mu _\alpha ^{(N)}({f^2})C{\mathcal E}_\alpha ^{(N)}{(f,f)^{p/(p + 1)}}\mu _\alpha ^{(N)}{(|f|)^{2/(p + 1)}},\;\;\;f \in {\mathcal D}({\mathcal E}_\alpha ^{(N)}),\mu _\alpha ^{(N)}(f) = 0,$$

for some constant C > 0 and p = (αN+1–1)+ + Σi=1N 1 V (2αi), where the constant p is sharp when max1iNαi ⩽ 1/2 and αN+1 ⩾ 1. This Nash inequality also holds for the corresponding Fleming-Viot process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakosi J, Ristorcelli J R. A stochastic diffusion process for the Dirichlet distribution. Int J Stoch Anal, 2013, Article ID: 842981 (7 pp)

    Google Scholar 

  2. Bakry D, Gentil I, Ledoux M. Analysis and Geometry of Markov Diffusion Operators. Berlin: Springer, 2014

    Book  Google Scholar 

  3. Connor R J, Mosimann J E. Concepts of independence for proportions with a generalization of the Dirichlet distribution. J. Amer Statist Assoc, 1969, 64: 194–206

    Article  MathSciNet  Google Scholar 

  4. Davies E B, Simon B. Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians. J Funct Anal, 1984, 59: 335–395

    Article  MathSciNet  Google Scholar 

  5. Epstein C L, Mazzeo R. Wright-Fisher diffusion in one dimension. SIAM J Math Anal, 2010, 42: 568–608

    Article  MathSciNet  Google Scholar 

  6. Feng S, Miclo L. Wang F -Y. Poincare inequality for Dirichlet distributions and infinite-dimensional generalizations. ALEA Lat Am J Probab Math Stat, 2017, 14: 361–380

    MathSciNet  MATH  Google Scholar 

  7. Feng S, Wang F -Y. A class of infinite-dimensional diffusion processes with connection to population genetics. J Appl Probab, 2007, 44: 938–949

    Article  MathSciNet  Google Scholar 

  8. Feng S, Wang F -Y. Harnack inequality and applications for infinite-dimensional GEM processes. Potential Anal, 2016, 44: 137–153

    Article  MathSciNet  Google Scholar 

  9. Gross L. Logarithmic Sobolev inequalities and contractivity properties of semigroups. In: Dell’Antonio G, Mosco U, eds. Dirichlet Forms. Lecture Notes in Math, Vol 1563. Berlin: Springer, 1993, 54–88

    Chapter  Google Scholar 

  10. Jacobsen M. Examples of multivariate diffusions: time-reversibility; a Cox-Ingersoll-Ross type process. Department of Theoretical Statistics, Univ of Copenhagen, 2001, Preprint

    Google Scholar 

  11. Johnson N. L. An approximation to the multinomial distribution, some properties and applications. Biometrika, 1960, 47: 93–102

    Article  MathSciNet  Google Scholar 

  12. Miclo L. About projections of logarithmic Sobolev inequalities. In: Azema J, Emery M, Ledoux M, Yor M, eds. Seminaire de Probabilites XXXVI. Lecture Notes in Math, Vol 1801. Berlin: Springer, 2003, 201–221

    Google Scholar 

  13. Miclo L. Sur l’inegalite de Sobolev logarithmique des operateurs de Laguerre a petit parametre. In: Azema J, Emery M, Ledoux M, Yor M, eds. Seminaire de Probabilites XXXVI. Lecture Notes in Math, Vol 1801. Berlin: Springer, 2003, 222–229

    Google Scholar 

  14. Mosimann J E. On the compound multinomial distribution, the multivariate-distribution, and correlations among proportions. Biometrika, 1962, 49: 65–82

    MathSciNet  MATH  Google Scholar 

  15. Shimakura N. Equations differentielles provenant de la genetique des populations. Tohoka Math J, 1977, 29: 287–318

    Article  Google Scholar 

  16. Stannat W. On validity of the log-Sobolev inequality for symmetric Fleming-Viot operators. Ann Probab, 2000, 28: 667–684

    Article  MathSciNet  Google Scholar 

  17. Wang F -Y. Functional inequalities for empty essential spectrum. J Funct Anal, 2000, 170: 219–245

    Article  MathSciNet  Google Scholar 

  18. Wang F -Y. Functional inequalities, semigroup properties and spectrum estimates. Infin Dimens Anal Quantum Probab Relat Top, 2000, 3: 263–295

    Article  MathSciNet  Google Scholar 

  19. Wang F -Y. Functional Inequalities, Markov Semigroups and Spectral Theory. Beijing: Science Press, 2005

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for helpful comments on an earlier version of the paper. This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11771326, 11726627, 11831014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Yu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, FY., Zhang, W. Nash inequality for diffusion processes associated with Dirichlet distributions. Front. Math. China 14, 1317–1338 (2019). https://doi.org/10.1007/s11464-019-0807-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-019-0807-3

Keywords

MSC

Navigation