Skip to main content

Criteria for Exponential Convergence to Quasi-Stationary Distributions and Applications to Multi-Dimensional Diffusions

  • Chapter
  • First Online:
Séminaire de Probabilités XLIX

Abstract

We consider general Markov processes with absorption and provide criteria ensuring the exponential convergence in total variation of the distribution of the process conditioned not to be absorbed. The first one is based on two-sided estimates on the transition kernel of the process and the second one on gradient estimates on its semigroup. We apply these criteria to multi-dimensional diffusion processes in bounded domains of \(\mathbb {R}^d\) or in compact Riemannian manifolds with boundary, with absorption at the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The assumption of continuity is only used to ensure that the entrance times in compact sets are stopping times for the natural filtration (cf. e.g. [20, p. 48]), and hence that the strong Markov property applies at this time. Our result would also hold true for càdlàg (weak) Markov processes provided that the strong Markov property applies at the hitting times of compact sets.

References

  1. D.G. Aronson, Non-negative solutions of linear parabolic equations. Ann. Scuola Norm. Sup. Pisa (3) 22, 607–694 (1968)

    Google Scholar 

  2. K. Bogdan, T. Grzywny, M. Ryznar, Heat kernel estimates for the fractional Laplacian with Dirichlet conditions. Ann. Probab. 38(5), 1901–1923 (2010)

    Article  MathSciNet  Google Scholar 

  3. P. Cattiaux, S. Méléard, Competitive or weak cooperative stochastic lotka-volterra systems conditioned to non-extinction. J. Math. Biol. 60(6), 797–829 (2010)

    Article  MathSciNet  Google Scholar 

  4. P. Cattiaux, P. Collet, A. Lambert, S. Martínez, S. Méléard, J.S. Martín, Quasi-stationary distributions and diffusion models in population dynamics. Ann. Probab. 37(5), 1926–1969 (2009)

    Article  MathSciNet  Google Scholar 

  5. N. Champagnat, D. Villemonais, Uniform convergence of conditional distributions for absorbed one-dimensional diffusions (2015). ArXiv e-prints

    Google Scholar 

  6. N. Champagnat, D. Villemonais, Exponential convergence to quasi-stationary distribution and Q-process. Probab. Theory Relat. Fields 164(1–2), 243–283 (2016)

    Article  MathSciNet  Google Scholar 

  7. N. Champagnat, D. Villemonais, Uniform convergence to the Q-process. Electron. Commun. Probab. 22, 1–7 (2017)

    Article  MathSciNet  Google Scholar 

  8. Z.-Q. Chen, P. Kim, R. Song, Heat kernel estimates for Δ + Δ α∕2 in C 1, 1 open sets. J. Lond. Math. Soc. (2) 84(1), 58–80 (2011)

    Google Scholar 

  9. Z.-Q. Chen, P. Kim, R. Song, Dirichlet heat kernel estimates for fractional Laplacian with gradient perturbation. Ann. Probab. 40(6), 2483–2538 (2012)

    Article  MathSciNet  Google Scholar 

  10. Z.-Q. Chen, P. Kim, R. Song, Stability of Dirichlet heat kernel estimates for non-local operators under Feynman-Kac perturbation. Trans. Am. Math. Soc. 367(7), 5237–5270 (2015)

    Article  MathSciNet  Google Scholar 

  11. E.B. Davies, B. Simon, Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians. J. Funct. Anal. 59(2), 335–395 (1984)

    Article  MathSciNet  Google Scholar 

  12. P. Del Moral, D. Villemonais, Exponential mixing properties for time inhomogeneous diffusion processes with killing. Bernoulli 24(2), 1010–1032 (2018)

    Article  MathSciNet  Google Scholar 

  13. E.B. Dynkin, Diffusions, Superdiffusions and Partial Differential Equations. American Mathematical Society Colloquium Publications, vol. 50 (American Mathematical Society, Providence, 2002)

    Google Scholar 

  14. A. Hening, M. Kolb, Quasistationary distributions for one-dimensional diffusions with singular boundary points (2014). ArXiv e-prints

    Google Scholar 

  15. O. Kallenberg, Foundations of Modern Probability. Probability and Its Applications (New York), 2nd edn. (Springer, New York, 2002)

    Google Scholar 

  16. K.-Y. Kim, P. Kim, Two-sided estimates for the transition densities of symmetric Markov processes dominated by stable-like processes in C 1, η open sets. Stoch. Process. Appl. 124(9), 3055–3083 (2014)

    Article  MathSciNet  Google Scholar 

  17. P. Kim, R. Song, Estimates on Green functions and Schrödinger-type equations for non-symmetric diffusions with measure-valued drifts. J. Math. Anal. Appl. 332(1), 57–80 (2007)

    Article  MathSciNet  Google Scholar 

  18. R. Knobloch, L. Partzsch, Uniform conditional ergodicity and intrinsic ultracontractivity. Potential Anal. 33, 107–136 (2010)

    Article  MathSciNet  Google Scholar 

  19. M. Kolb, A. Wübker, Spectral analysis of diffusions with jump boundary. J. Funct. Anal. 261(7), 1992–2012 (2011)

    Article  MathSciNet  Google Scholar 

  20. J.-F. Le Gall, Brownian Motion, Martingales, and Stochastic Calculus. Graduate Texts in Mathematics, vol. 274, French edn. (Springer, Berlin, 2016)

    Google Scholar 

  21. J. Lierl, L. Saloff-Coste, The Dirichlet heat kernel in inner uniform domains: local results, compact domains and non-symmetric forms. J. Funct. Anal. 266(7), 4189–4235 (2014)

    Article  MathSciNet  Google Scholar 

  22. T. Lindvall, L.C.G. Rogers, Coupling of multidimensional diffusions by reflection. Ann. Probab. 14(3), 860–872 (1986)

    Article  MathSciNet  Google Scholar 

  23. J.C. Littin, Uniqueness of quasistationary distributions and discrete spectra when is an entrance boundary and 0 is singular. J. Appl. Probab. 49(3), 719–730 (2012)

    Article  MathSciNet  Google Scholar 

  24. Y. Miura, Ultracontractivity for Markov semigroups and quasi-stationary distributions. Stoch. Anal. Appl. 32(4), 591–601 (2014)

    Article  MathSciNet  Google Scholar 

  25. D. Nualart, The Malliavin Calculus and Related Topics. Probability and Its Applications (New York), 2nd edn. (Springer, Berlin, 2006)

    Google Scholar 

  26. E. Priola, F.-Y. Wang, Gradient estimates for diffusion semigroups with singular coefficients. J. Funct. Anal. 236(1), 244–264 (2006)

    Article  MathSciNet  Google Scholar 

  27. D.W. Stroock, S.R.S. Varadhan, Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 233 (Springer, Berlin, 1979)

    Google Scholar 

  28. F.-Y. Wang, Sharp explicit lower bounds of heat kernels. Ann. Probab. 25(4), 1995–2006 (1997)

    Article  MathSciNet  Google Scholar 

  29. F.-Y. Wang, Gradient estimates of Dirichlet heat semigroups and application to isoperimetric inequalities. Ann. Probab. 32(1A), 424–440 (2004)

    Article  MathSciNet  Google Scholar 

  30. Q.S. Zhang, Gaussian bounds for the fundamental solutions of ∇(Au) + Bu − u t = 0. Manuscr. Math. 93(3), 381–390 (1997)

    Article  Google Scholar 

  31. Q.S. Zhang, The boundary behavior of heat kernels of Dirichlet Laplacians. J. Differ. Equ. 182(2), 416–430 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Champagnat .

Editor information

Editors and Affiliations

Appendix: Proof of (5.2)

Appendix: Proof of (5.2)

Let us assume that Condition (A) is satisfied. For all t ≥ 0 and all probability measure π on E, let . In the proof of [6, Corollary 2.2], it is proved that, for all probability measures π 1, π 2 on E

$$\displaystyle \begin{aligned} \left\|\mathbb{P}_{\pi_1}(X_t\in\cdot\mid t<\tau_\partial)-\mathbb{P}_{\pi_2}(X_t\in\cdot\mid t<\tau_\partial)\right\|{}_{TV} &\leq \frac{(1-c_1c_2)^{\lfloor t/t_0\rfloor}}{c_t(\pi_1)\vee c_t(\pi_2)}\|\pi_1-\pi_2\|{}_{TV}. \end{aligned} $$

But

$$\displaystyle \begin{aligned} \inf_{t\geq 0}c_t(\pi_1)\vee c_t(\pi_2)\geq (\inf_{t\geq 0} c_t(\pi_1))\vee (\inf_{t\geq 0} c_t(\pi_2))=c(\pi_1)\vee c(\pi_2). \end{aligned} $$

This ends the proof of (5.2).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Champagnat, N., Coulibaly-Pasquier, K.A., Villemonais, D. (2018). Criteria for Exponential Convergence to Quasi-Stationary Distributions and Applications to Multi-Dimensional Diffusions. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) Séminaire de Probabilités XLIX. Lecture Notes in Mathematics(), vol 2215. Springer, Cham. https://doi.org/10.1007/978-3-319-92420-5_5

Download citation

Publish with us

Policies and ethics