Skip to main content
Log in

On the seismic stability of soil slopes containing dual weak layers: true failure load assessment by finite-element limit-analysis

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Seismic stability analyses of soil slopes in the presence of weak interlayers are rather challenging within the framework of plasticity theory, due to the construction of kinematically admissible velocity fields and statically allowable stress fields at limit state. Finite-element limit-analysis procedures including finite-element upper-bound (FEUB) and finite-element lower-bound (FELB) approach are introduced in this study, retaining the merits of FEM and limit analysis theory to tackle above issues. Incorporating modified pseudo-dynamic approach, seismic slope stability analyses are transformed to linear programming models, in terms of lower- and upper-bound formulations. Pseudo-static and modified pseudo-dynamic solutions of the factor of safety (FoS) are sought through optimization with an interior-point algorithm. An appealing merit of the proposed procedure is that both lower and upper bounds are searched, aiding to better estimate the true solution of FoS. Limit equilibrium and Abaqus are applied to validate FEUB and FELB results. Effects of dual weak interlayers’ position and dimension on seismic slope stability are investigated. Critical failure surface and velocity field are plotted by post-processing, demonstrating a rotational-translational failure mechanism. Based on less than 5% difference between lower- and upper-bound solutions, the proposed procedure is capable of providing a reliable guidance for slope design and assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Abe K, Nakamura S, Nakamura H, Shiomi K (2017) Numerical study on dynamic behavior of slope models including weak layers from deformation to failure using material point method. Soils Found 57:155–175

    Article  Google Scholar 

  2. Bhandari T, Hamad F, Moormann C, Sharma KG, Westrich B (2016) Numerical modelling of seismic slope failure using MPM. Comput Geotech 75:126–134

    Article  Google Scholar 

  3. Camargo J, Velloso RQ, Vargas EA Jr (2016) Numerical limit analysis of three-dimensional slope stability problems in catchment areas. Acta Geotech 11:1369–1383

    Article  Google Scholar 

  4. Chen WF (1975) Limit analysis and soil plasticity. Elsevier Science, Amsterdam

    MATH  Google Scholar 

  5. Cheng YM, Liang L, Chi SC, Wei WB (2008) Determination of the critical slip surface using artificial fish swarms algorithm. J Geotech Geoenviron Engng 134(2):244–251

    Article  Google Scholar 

  6. Eskandarinejad A, Shafiee AH (2011) Pseudo-dynamic analysis of seismic stability of reinforced slopes considering non-associated flow rule. J Cent South Univ 18:2091–2099

    Article  Google Scholar 

  7. Gandomi AH, Kashani AR, Mousavi M, Jalalvandi M (2015) Slope stability analyzing using recent swarm intelligence techniques. Int J Numer Anal Meth Geomech 39(3):295–309

    Article  Google Scholar 

  8. Garmondyu Jr EC, Cai QX, Shu JS, Han L, Yamah JB (2016) Effects of weak layer angle and thickness on the stability of rock slopes. Int J Min Geo-Eng 50(1):97–110

    Google Scholar 

  9. Ho IH (2015) Numerical study of slope-stabilizing piles in undrained clayey slopes with a weak thin layer. Int J Geomech 15(5):06014025

    Article  Google Scholar 

  10. Huang MS, Fan XP, Wang HR (2017) Three-dimensional upper bound stability analysis of slopes with soft band based on rotational-translational mechanisms. Eng Geol 223:82–91

    Article  Google Scholar 

  11. Huang MS, Wang HR, Sheng DC, Liu YL (2013) Rotational-translational mechanism for the upper bound stability analysis of slopes with soft band. Comput Geotech 53:133–141

    Article  Google Scholar 

  12. Li ZW, Yang XL (2020) Three-dimensional active earth pressure for retaining structures in soils subjected to steady unsaturated seepage effects. Acta Geotech 15:2017–2029

    Article  Google Scholar 

  13. Ling H, Ling HI, Kawabata T (2014) Revisiting Nigawa landslide of the 1995 Kobe earthquake. Géotechnique 64:400–404

    Article  Google Scholar 

  14. Michalowski RL (1995) Slope stability analysis: a kinematical approach. Géotechnique 45(2):283–293

    Article  MathSciNet  Google Scholar 

  15. Pain A, Choudhury D, Bhattacharyya SK (2016) Seismic uplift capacity of horizontal strip anchors using modified pseudo-dynamic approach. Int J Geomech 16(1):04015025

    Article  Google Scholar 

  16. Qin CB, Chian SC (2018) Kinematic analysis of seismic slope stability with a discretisation technique and pseudo-dynamic approach: a new perspective. Géotechnique 68(6):492–503

    Article  Google Scholar 

  17. Qin CB, Chian SC (2019) Impact of earthquake characteristics on seismic slope stability using modified pseudo-dynamic method. Int J Geomech 19(9):04019106

    Article  Google Scholar 

  18. Qin CB, Chian SC, Du SZ (2020) Revisiting seismic slope stability: Intermediate or below-the-toe failure? Géotechnique 70(1):71–79

    Article  Google Scholar 

  19. Rajesh BG, Choudhury D (2017) Seismic passive earth resistance in submerged soils using modified pseudo-dynamic method with curved rupture surface. Mar Georesour Geotec 35(7):930–938

    Article  Google Scholar 

  20. Shinoda M, Watanabe K, Sanagawa T, Abe K, Nakamura H, Kawai T, Nakamura S (2015) Dynamic behavior of slope models with various slope inclinations. Soils Found 55(1):127–142

    Article  Google Scholar 

  21. Sloan SW (1988) Lower bound limit analysis using finite elements and linear programming. Int J Numer Analyt Methods Geomech 12:61–77

    Article  MATH  Google Scholar 

  22. Sloan SW (1989) Upper bound limit analysis using finite elements and linear programming. Int J Numer Analyt Methods Geomech 13:263–282

    Article  MATH  Google Scholar 

  23. Sloan SW (2013) Geotechnical stability analysis. Géotechnique 63(7):531–572

    Article  Google Scholar 

  24. Steedman RS, Zeng X (1990) The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall. Géotechnique 40(1):103–112

    Article  Google Scholar 

  25. Wang R, Zhang G, Zhang JM (2010) Centrifuge modelling of clay slope with montmorillonite weak layer under rainfall conditions. Appl Clay Sci 50:386–394

    Article  Google Scholar 

  26. Wu JH, Lin JS, Chen CS (2009) Dynamic discrete analysis of an earthquake-induced large-scale landslide. Int J Rock Mech Min Sci 46(2):397–407

    Article  Google Scholar 

  27. Xue D, Li T, Zhang S, Ma C, Gao M, Liu J (2018) Failure mechanism and stabilization of a basalt rock slide with weak layers. Eng Geol 233:213–224

    Article  Google Scholar 

  28. Yang XL, Li L, Yin JH (2004) Seismic and static stability analysis of rock slopes by a kinematical approach. Géotechnique 54:543–549

    Article  Google Scholar 

  29. Yang YC, Xing HG, Yang XG, Chen ML, Zhou JW (2018) Experimental study on the dynamic response and stability of bedding rock slopes with soft bands under heavy rainfall. Environ Earth Sci 77:433

    Article  Google Scholar 

  30. Zhou JF, Qin CB (2020) Finite-element upper-bound analysis of seismic slope stability considering pseudo-dynamic approach. Comput Geotech 122:103530

    Article  Google Scholar 

  31. Zhou JF, Qin CB (2022) Stability analysis of unsaturated soil slopes under reservoir drawdown and rainfall conditions: steady and transient state analysis. Comput Geotech 142:104541. https://doi.org/10.1016/j.compgeo.2021.104541

    Article  Google Scholar 

  32. Zhou HZ, Zheng G, Yang XY, Diao Y, Gong LS, Cheng XS (2016) Displacement of pile-reinforced slopes with a weak layer subjected to seismic loads. Math Probl Eng 9:1527659

    Google Scholar 

  33. Zolfaghari AR, Heath AC, McCombie PF (2005) Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis. Comput Geotech 32(3):139–152

    Article  Google Scholar 

Download references

Acknowledgements

The research was financially supported by National Natural Science Foundation of China (Grant No.: 52108302, 52009046), Chongqing Talents Program (Grant No.: cstc2021ycjh-bgzxm0051), Natural Science Foundation of Fujian Province, China (Grant No.: 2019J05088), Fundamental Research Funds for the Central Universities of Huaqiao University (Grant No.: ZQN-914), and Scientific Research Funding of Chongqing University (Grant No.: 02180011044165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Finite-element upper-bound analysis

$$A_{11}^{e} = \frac{1}{{2A^{e} }}\left[ {\begin{array}{*{20}c} {b_{1}^{e} } & 0 & {b_{2}^{e} } & 0 & {b_{3}^{e} } & 0 \\ 0 & {c_{1}^{e} } & 0 & {c_{2}^{e} } & 0 & {c_{3}^{e} } \\ {c_{1}^{e} } & {b_{1}^{e} } & {c_{2}^{e} } & {b_{2}^{e} } & {c_{3}^{e} } & {b_{3}^{e} } \\ \end{array} } \right]$$
(A1)
$$A_{12}^{e} = \left[ {\begin{array}{*{20}c} {M_{1}^{{}} } & {M_{2}^{{}} } & \cdots & {M_{k}^{{}} } & \cdots & {M_{p}^{{}} } \\ {N_{1}^{{}} } & {N_{2}^{{}} } & \cdots & {N_{k}^{{}} } & \cdots & {N_{p}^{{}} } \\ {R_{1}^{{}} } & {R_{2}^{{}} } & \cdots & {R_{k}^{{}} } & \cdots & {R_{p}^{{}} } \\ \end{array} } \right]$$
(A2)
$$A_{23}^{d} = \left[ {\begin{array}{*{20}c} {T_{1}^{d} } & 0 \\ 0 & {T_{1}^{d} } \\ \end{array} } \right],\;\;T_{1}^{d} = \left[ {\begin{array}{*{20}c} {\sin \theta^{d} } & { - \cos \theta^{d} } & { - \sin \theta^{d} } & {\cos \theta^{d} } \\ { - \cos \theta^{d} } & { - \sin \theta^{d} } & {\cos \theta^{d} } & {\sin \theta^{d} } \\ \end{array} } \right]$$
(A3)
$$A_{24}^{d} = \left[ {\begin{array}{*{20}c} {T_{2}^{d} } & 0 \\ 0 & {T_{2}^{d} } \\ \end{array} } \right],\;\;T_{2}^{d} = \left[ {\begin{array}{*{20}c} {\tan \varphi } & {\tan \varphi } \\ 1 & { - 1} \\ \end{array} } \right]$$
(A4)
$$A_{3}^{b} = \left[ {\begin{array}{*{20}c} {T_{3}^{b} } & 0 \\ 0 & {T_{3}^{b} } \\ \end{array} } \right],\;\;T_{3}^{b} = \left[ {\begin{array}{*{20}c} {\cos \theta^{b} } & {\sin \theta^{b} } \\ { - \sin \theta^{b} } & {\cos \theta^{b} } \\ \end{array} } \right]$$
(A5)
$$B_{3}^{b} = \left[ {\begin{array}{*{20}c} {\overline{u}_{s1}^{b} } & {\overline{v}_{n1}^{b} } \\ \end{array} \;\;\;\;\begin{array}{*{20}c} {\overline{u}_{s2}^{b} } & {\overline{v}_{n2}^{b} } \\ \end{array} } \right]^{T}$$
(A6)

where \(A^{e}\) is the area of a random element e (Fig. 1a), \(b_{1}^{e} = y_{2}^{e} - y_{3}^{e}\), \(b_{2}^{e} = y_{3}^{e} - y_{1}^{e}\), \(b_{3}^{e} = y_{1}^{e} - y_{2}^{e}\), \(c_{1}^{e} = - x_{2}^{e} + x_{3}^{e}\),\(c_{2}^{e} = - x_{3}^{e} + x_{1}^{e}\), \(c_{3}^{e} = - x_{1}^{e} + x_{2}^{e}\), with (\(x_{1}^{e}\), \(y_{1}^{e}\)), (\(x_{2}^{e}\), \(y_{2}^{e}\)), and (\(x_{3}^{e}\), \(y_{3}^{e}\)) being the coordinates of three nodes in element e. For an external linearization of the MC failure criterion with p planes, \(M_{k}^{{}} = \cos (2k\pi /p) + \sin \varphi\),\(N_{k}^{{}} = - \cos (2k\pi /p) + \sin \varphi\),\(R_{k}^{{}} = 2\sin (2k\pi /p)\), \(k = 1,\;2, \cdots ,\;p\). \(\theta^{d}\) is the angle of velocity discontinuity (e.g., edge d) inclined to x-axis as shown in Fig. 1b. \(\theta^{b}\) is the angle of a random boundary (e.g., boundary b) with respect to x-axis as shown in Fig. 1c. \(\overline{u}_{si}^{b}\) and \(\overline{v}_{ni}^{b}\) denote the prescribed tangential and normal nodal velocity at node i (i = 1, 2), respectively.

$$C_{i1}^{e} = 2A^{e} c\cos \varphi [\underbrace {{\begin{array}{*{20}c} 1 & 1 & \cdots & 1 \\ \end{array} }}_{p}]$$
(A7)
$$C_{i2}^{d} = \frac{1}{2}cl^{d} [\begin{array}{*{20}c} 1 & 1 & 1 & 1 \\ \end{array} ]$$
(A8)
$$C_{e1}^{e} = \frac{{A^{e} }}{3}\left[ {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} {\begin{array}{*{20}c} \gamma & 0 \\ \end{array} } & \gamma & 0 & \gamma \\ \end{array} } \\ \end{array} } \right]$$
(A9)
$$C_{e2}^{q} = \frac{{l^{q} }}{2}\left[ {\begin{array}{*{20}c} 0 & {\overline{q}_{n} } & 0 & {\overline{q}_{n} } \\ \end{array} } \right]$$
(A10)
$$C_{e3}^{e} = \frac{{A^{e} \cdot \gamma }}{3}\left[ {\begin{array}{*{20}c} {k_{h} (t,y)} & {\begin{array}{*{20}c} {\begin{array}{*{20}c} {k_{v} (t,y)} & {k_{h} (t,y)} \\ \end{array} } & {k_{v} (t,y)} & {k_{h} (t,y)} & {k_{v} (t,y)} \\ \end{array} } \\ \end{array} } \right]$$
(A11)

where \(l^{d}\) denotes the length of a velocity discontinuity (e.g., d), \(l^{q}\) is the length of an edge (e.g., q) where traction force \(\overline{q}_{n}\) acts.

Appendix B: Finite-element lower-bound analysis

$$A_{1}^{e} = \frac{1}{{2A^{e} }}\left[ {\begin{array}{*{20}c} {b_{1} } & 0 & {c_{1} } & {b_{2} } & 0 & {c_{2} } & {b_{3} } & 0 & {c_{3} } \\ 0 & {c_{1} } & {b_{1} } & 0 & {c_{2} } & {b_{2} } & 0 & {c_{3} } & {b_{3} } \\ \end{array} } \right]$$
(B1)
$$B_{1}^{e} = \left[ {\begin{array}{*{20}c} {X_{x}^{e} } & {X_{y}^{e} } \\ \end{array} } \right]^{T}$$
(B2)
$$A_{2}^{d} = \left[ {\begin{array}{*{20}c} {T^{d} } & { - T^{d} } & 0 & 0 \\ 0 & 0 & {T^{d} } & { - T^{d} } \\ \end{array} } \right],\;\;\;T^{d} = \left[ {\begin{array}{*{20}c} {\sin {}^{2}\theta^{d} } & {\cos {}^{2}\theta^{d} } & { - \sin 2\theta^{d} } \\ { - \frac{1}{2}\sin 2\theta^{d} } & {\frac{1}{2}\sin 2\theta^{d} } & {\cos 2\theta^{d} } \\ \end{array} } \right]$$
(B3)
$$A_{3}^{b} = \left[ {\begin{array}{*{20}c} {T^{b} } & 0 \\ 0 & {T^{b} } \\ \end{array} } \right],\;\;\;T^{b} = \left[ {\begin{array}{*{20}c} {\sin {}^{2}\theta^{b} } & {\cos {}^{2}\theta^{b} } & { - \sin 2\theta^{b} } \\ { - \frac{1}{2}\sin 2\theta^{b} } & {\frac{1}{2}\sin 2\theta^{b} } & {\cos 2\theta^{b} } \\ \end{array} } \right]$$
(B4)
$$B_{3}^{b} = \left[ {\begin{array}{*{20}c} {q_{n1}^{b} } & {t_{s1}^{b} } & {q_{n2}^{b} } & {t_{s2}^{b} } \\ \end{array} } \right]^{T}$$
(B5)
$$A_{4}^{i} = \left[ {\begin{array}{*{20}c} {m_{1} } & {m_{2} } & \cdots & {m_{k} } & \cdots & {m_{p} } \\ {n_{1} } & {n_{2} } & \cdots & {n_{k} } & \cdots & {n_{p} } \\ {r_{1} } & {r_{2} } & \cdots & {r_{k} } & \cdots & {r_{p} } \\ \end{array} } \right]^{T}$$
(B6)
$$B_{4}^{i} = 2c\cos \varphi \cos (\pi /p)[\underbrace {{\begin{array}{*{20}c} 1 & 1 & \cdots & 1 \\ \end{array} }}_{p}]^{T}$$
(B7)

where \(A^{e}\) is the area of a random element e (Fig. 2a), \(b_{1}^{e} = y_{2}^{e} - y_{3}^{e}\), \(b_{2}^{e} = y_{3}^{e} - y_{1}^{e}\), \(b_{3}^{e} = y_{1}^{e} - y_{2}^{e}\), \(c_{1}^{e} = - x_{2}^{e} + x_{3}^{e}\),\(c_{2}^{e} = - x_{3}^{e} + x_{1}^{e}\), \(c_{3}^{e} = - x_{1}^{e} + x_{2}^{e}\), with (\(x_{1}^{e}\), \(y_{1}^{e}\)), (\(x_{2}^{e}\), \(y_{2}^{e}\)), and (\(x_{3}^{e}\), \(y_{3}^{e}\)) being the coordinates of three nodes in element e. \(X_{x}^{e} ,\;X_{y}^{e}\) are body stress components in x- and y-direction. \(\theta^{d}\) is the angle of interface d with respect to x-axis (Fig. 2b). \(\theta^{b}\) is the angle of edge b inclined to x-axis (Fig. 2c). \(q_{n1}^{b} ,\;t_{s1}^{b}\) (\(q_{n2}^{b} ,\;t_{s2}^{b}\)) represent nodal normal and shear stresses at the node 1 (node 2) of edge b. For an internal linearization of the Mohr-Coulomb criterion with p planes, \(m_{k} = \cos (2k\pi /p) + \sin \varphi \cos (\pi /p)\),\(n_{k} = - \cos (2k\pi /p) + \sin \varphi \cos (\pi /p)\), \(r_{k} = 2\sin (2k\pi /p)\),\((k = 1,2, \cdots ,p)\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, C., Zhou, J. On the seismic stability of soil slopes containing dual weak layers: true failure load assessment by finite-element limit-analysis. Acta Geotech. 18, 3153–3175 (2023). https://doi.org/10.1007/s11440-022-01730-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-022-01730-2

Keywords

Navigation