Skip to main content
Log in

An InSAR and depth-integrated coupled model for potential landslide hazard assessment

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Assessing the hazard of potential landslides is crucial for developing mitigation strategies for landslide disasters. However, accurate assessment of landslide hazard is limited by the lack of landslide inventory maps and difficulty in determining landslide run-out distance. To address these issues, this study developed a novel method combining the InSAR technique with a depth-integrated model. Within this new framework, potential landslides are identified through InSAR and their potential impact areas are subsequently estimated using the depth-integrated model. To evaluate its capability, the proposed method was applied to a landslide event that occurred on November 3, 2018 in Baige village, Tibet, China. The simulated results show that the area with a probability of more than 50% to be affected by landslides matched the real trimlines of the landslide and that the accuracy of the proposed method reached 85.65%. Furthermore, the main deposit characteristics, such as the location of maximum deposit thickness and the main deposit area, could be captured by the proposed method. Potential landslides in the Baige region were also identified and evaluated. The results indicate that in the event of landslides, the collapsed mass has a high probability to block the Jinsha River. It is therefore necessary to implement field monitoring and prepare hazard mitigation strategies in advance. This study provides new insights for regional-scale landslide hazard management and further contributes to the implementation of landslide risk assessment and reduction activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

source area with macroscopic cracks prior to the second landslide (image taken by a UAV on October 16, 2018). The red lines present the cracks at the back edge. b Cracks on the left-hand side. c Crack on the right-hand side

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Aloi F, Pirone M, Urciuoli G (2019) Numerical investigation of small- and medium-diameter drain wells to stabilise deep landslides. Acta Geotech 14:1065–1080. https://doi.org/10.1007/s11440-018-0688-8

    Article  Google Scholar 

  2. An H, Ouyang C, Wang D (2021) A new two-phase flow model based on coupling of the depth-integrated continuum method and discrete element method. Comput Geosci 146:104640. https://doi.org/10.1016/j.cageo.2020.104640

    Article  Google Scholar 

  3. An H, Ouyang C, Zhao C, Zhao W (2020) Landslide dynamic process and parameter sensitivity analysis by discrete element method: the case of Turnoff Creek rock avalanche. J Mt Sci 17:1581–1595. https://doi.org/10.1007/s11629-020-5993-7

    Article  Google Scholar 

  4. An H, Ouyang C, Zhou S (2021) Dynamic process analysis of the Baige landslide by the combination of DEM and long-period seismic waves. Landslides 18:1625–1639. https://doi.org/10.1007/s10346-020-01595-0

    Article  Google Scholar 

  5. Angeli M-G, Pasuto A, Silvano S (2000) A critical review of landslide monitoring experiences. Eng Geol 55:133–147. https://doi.org/10.1016/S0013-7952(99)00122-2

    Article  Google Scholar 

  6. Bardi F, Frodella W, Ciampalini A et al (2014) Integration between ground based and satellite SAR data in landslide mapping: The San Fratello case study. Geomorphology 223:45–60. https://doi.org/10.1016/j.geomorph.2014.06.025

    Article  Google Scholar 

  7. Borja RI, Liu X, White JA (2012) Multiphysics hillslope processes triggering landslides. Acta Geotech 7:261–269. https://doi.org/10.1007/s11440-012-0175-6

    Article  Google Scholar 

  8. Bouali EH, Oommen T, Escobar-Wolf R (2018) Mapping of slow landslides on the Palos Verdes Peninsula using the California landslide inventory and persistent scatterer interferometry. Landslides 15:439–452. https://doi.org/10.1007/s10346-017-0882-z

    Article  Google Scholar 

  9. Bouchut F, Fernández-Nieto ED, Mangeney A, Narbona-Reina G (2016) A two-phase two-layer model for fluidized granular flows with dilatancy effects. J Fluid Mech 801:166–221. https://doi.org/10.1017/jfm.2016.417

    Article  MathSciNet  MATH  Google Scholar 

  10. Bru G, Fernández-Merodo JA, García-Davalillo JC et al (2018) Site scale modeling of slow-moving landslides, a 3D viscoplastic finite element modeling approach. Landslides 15:257–272. https://doi.org/10.1007/s10346-017-0867-y

    Article  Google Scholar 

  11. Calvetti F, di Prisco CG, Vairaktaris E (2017) DEM assessment of impact forces of dry granular masses on rigid barriers. Acta Geotech 12:129–144. https://doi.org/10.1007/s11440-016-0434-z

    Article  Google Scholar 

  12. Carlà T, Intrieri E, Raspini F et al (2019) Perspectives on the prediction of catastrophic slope failures from satellite InSAR. Sci Rep 9:14137. https://doi.org/10.1038/s41598-019-50792-y

    Article  Google Scholar 

  13. Carlà T, Intrieri E, Di Traglia F et al (2017) Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses. Landslides 14:517–534. https://doi.org/10.1007/s10346-016-0731-5

    Article  Google Scholar 

  14. Carla T, Raspini F, Intrieri E, Casagli N (2016) A simple method to help determine landslide susceptibility from spaceborne InSAR data: the Montescaglioso case study. Environ Earth Sci 75:1492. https://doi.org/10.1007/s12665-016-6308-8

    Article  Google Scholar 

  15. Chung C-JF, Fabbri AG, Van Westen CJ (1995) Multivariate regression analysis for landslide hazard zonation. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Springer, Dordrecht, pp 107–133

    Chapter  Google Scholar 

  16. Cuomo S, Pastor M, Capobianco V, Cascini L (2016) Modelling the space-time evolution of bed entrainment for flow-like landslides. Eng Geol 212:10–20. https://doi.org/10.1016/j.enggeo.2016.07.011

    Article  Google Scholar 

  17. Dai K, Xu Q, Li Z et al (2019) Post-disaster assessment of 2017 catastrophic Xinmo landslide (China) by spaceborne SAR interferometry. Landslides. https://doi.org/10.1007/s10346-019-01152-4

    Article  Google Scholar 

  18. Delgado Blasco JM, Foumelis M, Stewart C, Hooper A (2019) Measuring urban subsidence in the rome metropolitan area (Italy) with sentinel-1 SNAP-StaMPS persistent scatterer interferometry. Remote Sens 11:129. https://doi.org/10.3390/rs11020129

    Article  Google Scholar 

  19. Fan H, Wang L, Wen B, Du S (2021) A new model for three-dimensional deformation extraction with single-track InSAR based on mining subsidence characteristics. Int J Appl Earth Obs Geoinf 94:102223. https://doi.org/10.1016/j.jag.2020.102223

    Article  Google Scholar 

  20. Fan X, Xu Q, Alonso-Rodriguez A et al (2019) Successive landsliding and damming of the Jinsha River in eastern Tibet, China: prime investigation, early warning, and emergency response. Landslides. https://doi.org/10.1007/s10346-019-01159-x

    Article  Google Scholar 

  21. Fern EJ, Soga K (2016) The role of constitutive models in MPM simulations of granular column collapses. Acta Geotech 11:659–678. https://doi.org/10.1007/s11440-016-0436-x

    Article  Google Scholar 

  22. Ferretti A, Fumagalli A, Novali F et al (2011) A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans Geosci Remote Sens 49:3460–3470. https://doi.org/10.1109/TGRS.2011.2124465

    Article  Google Scholar 

  23. Finlay PJ, Fell R (2011) Landslides: risk perception and acceptance. Can Geotech J. https://doi.org/10.1139/t96-108

    Article  Google Scholar 

  24. Foumelis M, Blasco JMD, Desnos Y et al (2018) Esa Snap—stamps integrated processing for sentinel-1 persistent scatterer interferometry. In: IGARSS 2018—2018 IEEE international geoscience and remote sensing symposium, pp 1364–1367

  25. Frattini P, Crosta GB, Rossini M, Allievi J (2018) Activity and kinematic behaviour of deep-seated landslides from PS-InSAR displacement rate measurements. Landslides 15:1053–1070. https://doi.org/10.1007/s10346-017-0940-6

    Article  Google Scholar 

  26. Froude MJ, Petley DN (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci 18:2161–2181. https://doi.org/10.5194/nhess-18-2161-2018

    Article  Google Scholar 

  27. Guzzetti F, Tonelli G (2004) Information system on hydrological and geomorphological catastrophes in Italy (SICI): a tool for managing landslide and flood hazards. Nat Hazards Earth Syst Sci 4:213–232. https://doi.org/10.5194/nhess-4-213-2004

    Article  Google Scholar 

  28. Herrera G, Gutiérrez F, García-Davalillo JC et al (2013) Multi-sensor advanced DInSAR monitoring of very slow landslides: the Tena Valley case study (Central Spanish Pyrenees). Remote Sens Environ 128:31–43. https://doi.org/10.1016/j.rse.2012.09.020

    Article  Google Scholar 

  29. Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett. https://doi.org/10.1029/2008GL034654

    Article  Google Scholar 

  30. Hooper A, Segall P, Zebker H (2007) Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo. Galápagos J Geophys Res Solid Earth. https://doi.org/10.1029/2006JB004763

    Article  Google Scholar 

  31. Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett. https://doi.org/10.1029/2004GL021737

    Article  Google Scholar 

  32. Huang D, Li YQ, Song YX et al (2019) Insights into the catastrophic Xinmo rock avalanche in Maoxian county, China: combined effects of historical earthquakes and landslide amplification. Eng Geol 258:105158. https://doi.org/10.1016/j.enggeo.2019.105158

    Article  Google Scholar 

  33. Intrieri E, Raspini F, Fumagalli A et al (2018) The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data. Landslides 15:123–133. https://doi.org/10.1007/s10346-017-0915-7

    Article  Google Scholar 

  34. Iverson RM, George DL (2015) Modelling landslide liquefaction, mobility bifurcation and the dynamics of the 2014 Oso disaster. Géotechnique 66:175–187. https://doi.org/10.1680/jgeot.15.LM.004

    Article  Google Scholar 

  35. Iverson RM, George DL, Allstadt K et al (2015) Landslide mobility and hazards: implications of the 2014 Oso disaster. Earth Planet Sci Lett 412:197–208. https://doi.org/10.1016/j.epsl.2014.12.020

    Article  Google Scholar 

  36. Iverson RM, Ouyang C (2015) Entrainment of bed material by Earth-surface mass flows. Rev Geophys 53:27–58. https://doi.org/10.1002/2013RG000447

    Article  Google Scholar 

  37. Iverson RM, Reid ME, Logan M et al (2011) Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat Geosci 4:116–121. https://doi.org/10.1038/NGEO1040

    Article  Google Scholar 

  38. Jaboyedoff M, Carrea D, Derron M-H et al (2020) A review of methods used to estimate initial landslide failure surface depths and volumes. Eng Geol 267:105478. https://doi.org/10.1016/j.enggeo.2020.105478

    Article  Google Scholar 

  39. Jaboyedoff M, Couture R, Locat P (2009) Structural analysis of Turtle Mountain (Alberta) using digital elevation model: toward a progressive failure. Geomorphology 103:5–16. https://doi.org/10.1016/j.geomorph.2008.04.012

    Article  Google Scholar 

  40. Jaboyedoff M, Daicz S, Derron M-H et al (2013) Defining the volume and geometry of the landslide failure surfaces: a review with emphasis on the Sloping Local Base Level (SLBL). EGU2013-9431

  41. Labuz JF, Zang A (2012) Mohr-Coulomb failure criterion. Rock Mech Rock Eng 45:975–979. https://doi.org/10.1007/s00603-012-0281-7

    Article  Google Scholar 

  42. Li M, Zhang L, Ding C et al (2020) Retrieval of historical surface displacements of the Baige landslide from time-series SAR observations for retrospective analysis of the collapse event. Remote Sens Environ 240:111695. https://doi.org/10.1016/j.rse.2020.111695

    Article  Google Scholar 

  43. Liu X, Zhao C, Zhang Q et al (2020) Deformation of the Baige Landslide, Tibet, China, revealed through the integration of cross-platform ALOS/PALSAR-1 and ALOS/PALSAR-2 SAR Observations. Geophys Res Lett 47:e2019GL086142. https://doi.org/10.1029/2019GL086142

    Article  Google Scholar 

  44. Lu P, Catani F, Tofani V, Casagli N (2014) Quantitative hazard and risk assessment for slow-moving landslides from Persistent Scatterer Interferometry. Landslides 11:685–696. https://doi.org/10.1007/s10346-013-0432-2

    Article  Google Scholar 

  45. Marin RJ, García EF, Aristizábal E (2020) Effect of basin morphometric parameters on physically-based rainfall thresholds for shallow landslides. Eng Geol 278:105855. https://doi.org/10.1016/j.enggeo.2020.105855

    Article  Google Scholar 

  46. Mast CM, Arduino P, Mackenzie-Helnwein P, Miller GR (2015) Simulating granular column collapse using the Material Point Method. Acta Geotech 10:101–116. https://doi.org/10.1007/s11440-014-0309-0

    Article  Google Scholar 

  47. Meier C, Jaboyedoff M, Derron M-H, Gerber C (2020) A method to assess the probability of thickness and volume estimates of small and shallow initial landslide ruptures based on surface area. Landslides 17:975–982. https://doi.org/10.1007/s10346-020-01347-0

    Article  Google Scholar 

  48. Mufundirwa A, Fujii Y, Kodama J (2010) A new practical method for prediction of geomechanical failure-time. Int J Rock Mech Min Sci 47:1079–1090. https://doi.org/10.1016/j.ijrmms.2010.07.001

    Article  Google Scholar 

  49. Noferini L, Pieraccini M, Mecatti D et al (2007) Using GB-SAR technique to monitor slow moving landslide. Eng Geol 95:88–98. https://doi.org/10.1016/j.enggeo.2007.09.002

    Article  Google Scholar 

  50. Ouyang C, An H, Zhou S et al (2019) Insights from the failure and dynamic characteristics of two sequential landslides at Baige village along the Jinsha River, China. Landslides. https://doi.org/10.1007/s10346-019-01177-9

    Article  Google Scholar 

  51. Ouyang C, He S, Xu Q et al (2013) A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain. Comput Geosci 52:1–10. https://doi.org/10.1016/j.cageo.2012.08.024

    Article  Google Scholar 

  52. Ouyang C, He S, Xu Q (2015) MacCormack-TVD finite difference solution for dam break hydraulics over erodible sediment beds. J Hydraul Eng 141:06014026. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000986

    Article  Google Scholar 

  53. Ouyang C, Zhao W, An H et al (2019) Early identification and dynamic processes of ridge-top rockslides: implications from the Su Village landslide in Suichang County, Zhejiang Province, China. Landslides 16:799–813. https://doi.org/10.1007/s10346-018-01128-w

    Article  Google Scholar 

  54. Ouyang C, Zhao W, He S et al (2017) Numerical modeling and dynamic analysis of the 2017 Xinmo landslide in Maoxian County, China. J Mt Sci 14:1701–1711. https://doi.org/10.1007/s11629-017-4613-7

    Article  Google Scholar 

  55. Ouyang C, Zhou K, Xu Q et al (2017) Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China. Landslides 14:705–718. https://doi.org/10.1007/s10346-016-0764-9

    Article  Google Scholar 

  56. Pastor M, Blanc T, Haddad B et al (2014) Application of a SPH depth-integrated model to landslide run-out analysis. Landslides 11:793–812. https://doi.org/10.1007/s10346-014-0484-y

    Article  Google Scholar 

  57. Pastor M, Blanc T, Haddad B et al (2015) Depth averaged models for fast landslide propagation: mathematical, rheological and numerical aspects. Arch Comput Methods Eng 22:67–104. https://doi.org/10.1007/s11831-014-9110-3

    Article  MathSciNet  MATH  Google Scholar 

  58. Pastor M, Tayyebi SM, Stickle MM et al (2021) A depth integrated, coupled, two-phase model for debris flow propagation. Acta Geotech. https://doi.org/10.1007/s11440-020-01114-4

    Article  Google Scholar 

  59. Pedrazzini A, Froese CR, Jaboyedoff M et al (2012) Combining digital elevation model analysis and run-out modeling to characterize hazard posed by a potentially unstable rock slope at Turtle Mountain, Alberta, Canada. Eng Geol 128:76–94. https://doi.org/10.1016/j.enggeo.2011.03.015

    Article  Google Scholar 

  60. Peng C, Wang S, Wu W et al (2019) LOQUAT: an open-source GPU-accelerated SPH solver for geotechnical modeling. Acta Geotech 14:1269–1287. https://doi.org/10.1007/s11440-019-00839-1

    Article  Google Scholar 

  61. Peng C, Wu W, Yu H, Wang C (2015) A SPH approach for large deformation analysis with hypoplastic constitutive model. Acta Geotech 10:703–717. https://doi.org/10.1007/s11440-015-0399-3

    Article  Google Scholar 

  62. Peyret M, Djamour Y, Rizza M et al (2008) Monitoring of the large slow Kahrod landslide in Alborz mountain range (Iran) by GPS and SAR interferometry. Eng Geol 100:131–141. https://doi.org/10.1016/j.enggeo.2008.02.013

    Article  Google Scholar 

  63. Samsonov S, Dille A, Dewitte O et al (2020) Satellite interferometry for mapping surface deformation time series in one, two and three dimensions: a new method illustrated on a slow-moving landslide. Eng Geol 266:105471. https://doi.org/10.1016/j.enggeo.2019.105471

    Article  Google Scholar 

  64. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215. https://doi.org/10.1017/S0022112089000340

    Article  MathSciNet  MATH  Google Scholar 

  65. Scaringi G, Fan X, Xu Q et al (2018) Some considerations on the use of numerical methods to simulate past landslides and possible new failures: the case of the recent Xinmo landslide (Sichuan, China). Landslides 15:1359–1375. https://doi.org/10.1007/s10346-018-0953-9

    Article  Google Scholar 

  66. Shamshiri R, Nahavandchi H, Motagh M, Hooper A (2018) Efficient ground surface displacement monitoring using sentinel-1 data: integrating distributed scatterers (DS) identified using two-sample t-test with persistent scatterers (PS). Remote Sens 10:794. https://doi.org/10.3390/rs10050794

    Article  Google Scholar 

  67. Soeters R, van Westen CJ (1996) Slope instability recognition, analysis, and zonation. Landslides Investig Mitig Transp Res Board Natl Res Counc Spec Rep 247:129–177

    Google Scholar 

  68. Sun X, Zeng P, Li T et al (2020) Run-out distance exceedance probability evaluation and hazard zoning of an individual landslide. Landslides. https://doi.org/10.1007/s10346-020-01545-w

    Article  Google Scholar 

  69. Tantianuparp P, Shi X, Zhang L et al (2013) Characterization of landslide deformations in three gorges area using multiple InSAR data stacks. Remote Sens 5:2704–2719. https://doi.org/10.3390/rs5062704

    Article  Google Scholar 

  70. Wang J, Xiang W, Lu N (2014) Landsliding triggered by reservoir operation: a general conceptual model with a case study at Three Gorges Reservoir. Acta Geotech 9:771–788. https://doi.org/10.1007/s11440-014-0315-2

    Article  Google Scholar 

  71. Wei K, Ouyang C, Duan H et al (2020) Reflections on the catastrophic 2020 Yangtze River Basin Flooding in Southern China. The Innovation. https://doi.org/10.1016/j.xinn.2020.100038

    Article  Google Scholar 

  72. van Westen CJ, van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65:167–184. https://doi.org/10.1007/s10064-005-0023-0

    Article  Google Scholar 

  73. Xia X, Liang Q (2018) A new efficient implicit scheme for discretising the stiff friction terms in the shallow water equations. Adv Water Resour 117:87–97. https://doi.org/10.1016/j.advwatres.2018.05.004

    Article  Google Scholar 

  74. Xie M, Zhao W, Ju N et al (2020) Landslide evolution assessment based on InSAR and real-time monitoring of a large reactivated landslide, Wenchuan. China Eng Geol 277:105781. https://doi.org/10.1016/j.enggeo.2020.105781

    Article  Google Scholar 

  75. Xiong H, Yin Z-Y, Nicot F et al (2021) A novel multi-scale large deformation approach for modelling of granular collapse. Acta Geotech. https://doi.org/10.1007/s11440-020-01113-5

    Article  Google Scholar 

  76. Yang E, Bui HH, Nguyen GD et al (2021) Numerical investigation of the mechanism of granular flow impact on rigid control structures. Acta Geotech. https://doi.org/10.1007/s11440-021-01162-4

    Article  Google Scholar 

  77. Yunjun Z, Fattahi H, Amelung F (2019) Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Comput Geosci 133:104331. https://doi.org/10.1016/j.cageo.2019.104331

    Article  Google Scholar 

  78. Zhang Y, Meng XM, Dijkstra TA et al (2020) Forecasting the magnitude of potential landslides based on InSAR techniques. Remote Sens Environ 241:111738. https://doi.org/10.1016/j.rse.2020.111738

    Article  Google Scholar 

  79. Zhang Y, Xing A, Jin K et al (2020) Investigation and dynamic analyses of rockslide-induced debris avalanche in Shuicheng, Guizhou, China. Landslides. https://doi.org/10.1007/s10346-020-01436-0

  80. Zhang S, Yin Y, Hu X et al (2020) Dynamics and emplacement mechanisms of the successive Baige landslides on the Upper Reaches of the Jinsha River. China Eng Geol 278:105819. https://doi.org/10.1016/j.enggeo.2020.105819

    Article  Google Scholar 

  81. Zhang S, Yin Y, Hu X et al (2020) Initiation mechanism of the Baige landslide on the upper reaches of the Jinsha River, China. Landslides 17:2865–2877. https://doi.org/10.1007/s10346-020-01495-3

    Article  Google Scholar 

  82. Zhao C, Liu X, Zhang Q et al (2019) Insar application to Baige landslide event, china, from fast rescue to catchment investigation. In: IGARSS 2019—2019 IEEE international geoscience and remote sensing symposium, pp 9630–9633

  83. Zhou S, Ouyang C, An H et al (2020) Comprehensive study of the Beijing Daanshan rockslide based on real-time videos, field investigations, and numerical modeling. Landslides. https://doi.org/10.1007/s10346-020-01345-2

    Article  Google Scholar 

  84. Zhu Y, Xu S, Zhuang Y et al (2019) Characteristics and runout behaviour of the disastrous 28 August 2017 rock avalanche in Nayong, Guizhou, China. Eng Geol 259:105154. https://doi.org/10.1016/j.enggeo.2019.105154

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was provided by NSFC (42022054;41831291), Key Research Program of Frontier Sciences of CAS (QYZDY-SSW-DQC006), and Youth Innovation Promotion Association.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaojun Ouyang or Yu Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Ouyang, C. & Huang, Y. An InSAR and depth-integrated coupled model for potential landslide hazard assessment. Acta Geotech. 17, 3613–3632 (2022). https://doi.org/10.1007/s11440-021-01429-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01429-w

Keywords

Navigation