Skip to main content
Log in

SPH–DEM coupling method based on GPU and its application to the landslide tsunami. Part II: reproduction of the Vajont landslide tsunami

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Landslide tsunamis are complex fluid–solid coupling processes that often cause enormous catastrophes. In this study, the smooth particle hydrodynamics (SPH) and discrete element method (DEM) coupling algorithms are used to simulate the tsunami which was induced by the 1963 Vajont landslide, Italy. In order to simulate the failure process of the landslide, a DEM numerical model is constructed based on the geological structure of the landslide, and contact parameters for the DEM particles are inverted according to the laboratory tests. Based on the numerical results, the whole process of the tsunami by the Vajont landslide is reproduced in detail. Comparisons show that the simulated motion and accumulating characteristics of the landslide, the climb-up and peak overtopping flow of the tsunamis, and the load on the dam by the tsunamis agree well with the published results. The simulation also indicates that the right bank slope of Vajont Dam is the major spillway of the flood, thereby significantly reducing the flow directly over the dam, which is helpful to stabilize the dam; and the concrete of the left abutment is damaged by the mixture flow of water and geomaterials with a higher velocity (approx. 35 m/s at the max.). The overtopping depth decreases from the north bank to the south bank. The maximum depth on the right abutment and the left abutment is approximately 80 and 65 m, respectively, lower than the reported estimation of ~ 150 m. This study shows that the coupled SPH–DEM method and the developed code—CoSim—work well for the analysis and research on landslide tsunami.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

No data, models, or code were generated or used during the study.

References

  1. Abadie S, Morichon D, Grilli S et al (2010) Numerical simulation of waves generated by landslides using a multiple-fluid Navier–Stokes model. Coast Eng 57:779–794

    Article  Google Scholar 

  2. Anderson TB, Jackson R (1967) Fluid mechanical description of fluidized beds: equations of motion. Ind Eng Chem Fundam 6:527–539

    Article  Google Scholar 

  3. Ataie-Ashtiani B, Malek MS (2007) Near field amplitude of subaerial landslide generated waves in dam reservoirs. Dam Eng 17(4):197–222

    Google Scholar 

  4. Ataie-Ashtiani B, Najafi-Jilani A (2008) Laboratory investigations on impulsive waves caused by underwater landslide. Coast Eng 55:989–1004

    Article  Google Scholar 

  5. Basu D, Green S, Das K, et al (2009) Numerical simulation of surface waves generated by a subaerial landslide at Lituya Bay, Alaska. In: 28th international conference on ocean, offshore and arctic engineering May 31–June 5, Honolulu, Hawaii

  6. Bistacchi A, Massironi M, Superchi L et al (2013) A 3D geological model of the 1963 Vajont landslide. Ital J Eng Geol Environ 6:531–539

    Google Scholar 

  7. Bohui D, Yanguang T (2006) Landslide of tuoxi reservoir—first large landslide induced by reservoir storage in China. In: Symposium of the second conference of Chinese geotechnical and engineering, vol 1 (in Chinese)

  8. Boon CW, Houlsby GT, Utili S (2014) New insights into the 1963 Vajont slide using 2D and 3D distinct-element method analysis. Geotechnique 64(10):800–816

    Article  Google Scholar 

  9. Bosa S, Petti M (2011) Shallow water numerical model of the wave generated by the Vajont landslide. Environ Model Softw 26:406–418

    Article  Google Scholar 

  10. Bregoli F, Bateman A, Medina V (2017) Tsunamis generated by fast granular landslides: 3D experiments and empirical predictors. J Hydraul Res 55(6):743–758

    Article  Google Scholar 

  11. Broili L (1967) New knowledge on the geomorphology of the Vaiont slide slip surface. Rock Mech Eng Geol 5(1):38–88

    Google Scholar 

  12. Cheng H, Shuku T, Thoeni K et al (2019) An iterative Bayesian filtering framework for fast and automated calibration of DEM models. Comput Methods Appl Mech Eng 350:268–294

    Article  MathSciNet  MATH  Google Scholar 

  13. Chiara DV, Giovanni G, Marco B et al (2015) Insights from analogue modelling into the deformation mechanism of the Vaiont landslide. Geomorphology 228:52–59

    Article  Google Scholar 

  14. Christopher RJK, David NP (2003) Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy. Geomorphology 54:21–32

    Article  Google Scholar 

  15. Ciabatti M (1964) La dinamica della frana del Vajont, Giornale di Geologia. Ann Museo Geol Bologna XXXII:139–153 (in Italian)

  16. Cremonesi M, Frangi A, Perego U (2011) A lagrangian finite element approach for the simulation of water-waves induced by landslides. Comput Struct 89:1086–1093

    Article  Google Scholar 

  17. Crespo AJC, Dominguez JM, Rogers BD et al (2015) DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput Phys Commun 187:204–216

    Article  MATH  Google Scholar 

  18. Crowe CT, Sommerfeld M, Yutaka T (1997) Multiphase flows with droplets and particles. Taylor & Francis

  19. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65

    Article  Google Scholar 

  20. Enet F, Grilli ST, Watts P (2003) Laboratory experiments for tsunamis generated by underwater landslides: comparison with numerical modeling. In: Proceedings of the 13th international offshore and polar engineering conference. ISOPE03, Honolulu, Hawaii, USA, pp 372–379

  21. Filippo Z, Stefano T (2014) Numerical simulations of the 1963 Vajont landslide, Italy: application of 1D lagrangian modelling. Nat Hazards 70:567–592

    Article  Google Scholar 

  22. Franci A, Cremonesi M, Perego U et al (2020) 3D simulation of Vajont disaster. Part 1: numerical formulation and validation. Eng Geol 279:105854

    Article  Google Scholar 

  23. Fritz HM, Hager WH, Minor H-E (2004) Near field characteristics of landslide generated impulse waves. J Waterw Port Coast Ocean Eng 130(6):287–302

    Article  Google Scholar 

  24. Fritz HM, Mohammed F, Yoo J (2009) Lituya Bay landslide impact generated mega-tsunami 50th anniversary0. Pure Appl Geophys 166:153–175

    Article  Google Scholar 

  25. Genevois R, Ghirotti M (2005) The 1963 Vaiont landslide. G Geol Appl 1(2005):41–52. https://doi.org/10.1474/GGA.2005-01.0-05.0005

    Article  Google Scholar 

  26. Genevois R, Ghirotti M (2005) The 1963 Vaiont landslide. G Geol Appl 1:41–52

    Google Scholar 

  27. Ghirotti M (1994) Modellazione numerica della frana del Vajont sulla base di nuovi dati. Geol Romana 30:207–216 ((in Italian))

    Google Scholar 

  28. Gisler GR (2008) Tsunami simulations. Ann Rev Fluid Mech 40:71–90

    Article  MathSciNet  MATH  Google Scholar 

  29. Heller V, Hager WH (2010) Impulse product parameter in landslide generated impulse waves. J Waterw Port Coast Ocean Eng 136(3):145–155

    Article  Google Scholar 

  30. Heller V, Hager WH, Minor H-E (2008) Scale effects in subaerial landslide generated impulse waves. Exp Fluids 44(5):691–703

    Article  Google Scholar 

  31. Hendron AJ, Patton FD (1985) The Vajont slide, a geotechnical analysis based on new geologic observations of the failure surface. In: Technical report GL-85–5, Department of the Army, U.S. Army Corps of Engineering, Washington

  32. Ivars DM, Potyondy DO, Pierce M, Cundall PA (2008) The smooth-joint contact model. In: Proceedings of the 8th world congress on computational mechanics/5th European congress on computational methanics and applied science and engineering, Venice, paper a2735

  33. Karahan M, Ersoy H, Akgun A (2020) A 3D numerical simulation-based methodology for assessment of landslide-generated impulse waves: a case study of the Tersun Dam reservoir (NE Turkey). Landslides 17:2777–2794

    Article  Google Scholar 

  34. Kermani E, Qiu T (2020) Simulation of quasi-static axisymmetric collapse of granular columns using smoothed particle hydrodynamics and discrete element methods. Acta Geotech 15:423–437

    Article  Google Scholar 

  35. Leonards GA (1987) Dam failures. Eng Geol 24(1–4):1–577

    Article  Google Scholar 

  36. Liu Guang-Yu Xu, Wen-Jie S-C et al (2020) Study on the particle breakage of ballast based on a GPU accelerated discrete element method. Geosci Front 11(2):461–471

    Article  Google Scholar 

  37. Massironi M, Zampieri D, Superchi L et al (2013) Geological structures of the Vajont landslide. Ital J Eng Geol Environ Book Ser 6:573–582

    Google Scholar 

  38. Mikola RG, Sitar N (2014) 3D simulation of tsunami wave induced by rock slope failure using coupled DDA-SPH. In: 48th US rock mechanics/geomechanics symposium, Minneapolis, MN, USA, 1–4 June, 2014

  39. Müller L (1964) The rock slide in the Vajont valley. Rock Mech Eng Geol 2:148–212

    Google Scholar 

  40. Müller L (1968) New considerations on the Vajont slide. Rock Mech Eng Geol 6:1–91

    Google Scholar 

  41. Noda E (1970) Water waves generated by landslides. J Waterw Harb Coast Eng Div 96(2):307–333

    Article  Google Scholar 

  42. Paolo P, Alberto B (2015) Gravity-induced rock mass damage related to large en masse rockslides: evidence from Vajont. Geomorphology 2015(234):28–53

    Google Scholar 

  43. Pastor M, Herreros I, Fernández Merodo JA et al (2009) Modelling of fast catastrophic landslides and impulse waves induced by them in fjords, lakes and reservoirs. Eng Geol 109:124–134

    Article  Google Scholar 

  44. Peng C, Wang S, Wu W et al (2019) LOQUAT: an open-source GPU-accelerated SPH solver for geotechnical modeling. Acta Geotech 14:1269–1287

    Article  Google Scholar 

  45. Petronio L, Boaga J, Cassiani G (2016) Characterization of the Vajont landslide (North-Eastern Italy) by means of reflection and surface wave seismics. J Appl Geophys 128:8–67

    Article  Google Scholar 

  46. Pinyol NM, Alonso EE (2010) Criteria for rapid sliding II- Thermo-hydro-mechanical and scale effects in Vaiont case. Eng Geol 114:211–227

    Article  Google Scholar 

  47. Rinaldo G, Monica G (2005) Then 1963 Vaiont Landslide. G Geol Appl 1:41–52

    Google Scholar 

  48. Rossi D, Semenza E (1965) Carte geologiche devl versante settentrionale del Monte Toc e zone limitrofe, prima e dopo il fenomeno di scivolamento del 9 ottobre 1963, scala 1:5000. Università di Ferrara, Istituto di Geologia, Ferrara

    Google Scholar 

  49. Quirin Schiermeier (2017) Huge landslide triggered rare Greenland mega-tsunami. Nature News, 31 July 2017. http://www.nature.com/news/huge-landslide-triggered-rare-greenland-mega-tsunami-1.22374

  50. Selli R, Trevisan L (1964) Caratteri e interpretazioni della frana dev Vajont. G Geol, Ann Muse Geol Bologna XXXII:7–68 (in Italian)

  51. Semenza E, Ghirotti M (2000) History of the 1963 Vaiont slide: the importance of geological factors. Bull Eng Geol Env 59(2):87–97

    Article  Google Scholar 

  52. Semenza E, Ghirotti M (2000) History of the 1963 Vajont slide: the importance of geological factors. Bull Eng Geol Environ 59:87–97

    Article  Google Scholar 

  53. Serrano PA, Murillo J, García NP (2009) A finite volume method for the simulation of the waves generated by landslides. J Hydrol 373:273–289

    Article  Google Scholar 

  54. Superchi L (2012) The Vajont rockslide: new techniques and traditional methods to re-evaluate the catastrophic event. PhD thesis. University of Padova, Italy

  55. Tan H, Chen SH (2017) A hybrid DEM-SPH model for deformable landslide and its generated surge waves. Adv Water Resour 108:256–276

    Article  Google Scholar 

  56. Tika T, Hutchinson JN (1999) Ring shear tests on soil from the Vajont landslide slip surface. Geotechique 49:59–74

    Article  Google Scholar 

  57. Vacondio R, Mignosa P, Pagani S (2013) 3D SPH numerical simulation of the wave generated by the Vajont rockslide. Adv Water Resour 59:146–156

    Article  Google Scholar 

  58. Wang J, Wang S, Su A et al (2021) Simulating landslide-induced tsunamis in the Yangtze River at the Three Gorges in China. Acta Geotech 16:2487–2503

    Article  Google Scholar 

  59. Ward SN, Day S (2008) Tsunami balls: a granular approach to tsunami runup and inundation. Commun Comput Phys 3(1):222–249

    MATH  Google Scholar 

  60. Ward SN, Day S (2011) The 1963 landslide and flood at Vaiont reservoir Italy, A tsunami ball simulation. Ital J Geosci 130(1):16–26

    Google Scholar 

  61. Ward SN, Day S (2011) The 1963 Landslide and flood at Vaiont reservoir Italy, a tsunami ball simulation. J Geosci 130(1):16–26

    Google Scholar 

  62. Wei W, Guan-qi C, Hong Z et al (2016) Analysis of landslide-generated impulsive waves using a coupled DDA-SPH method. Eng Anal Bound Elem 64:267–277

    Article  MathSciNet  MATH  Google Scholar 

  63. Wen-Jie Xu (2012) CLE algorithm study of reservoir surge induced by landslide. J Eng Geol 20(3):350–354 (in Chinese)

    Google Scholar 

  64. Wiegel RL, Noda EK, Gee DM et al (1970) Water waves generated by landslides in reservoirs. J Waterw Harb Coast Eng Div 96(2):307–333

    Article  Google Scholar 

  65. Zhao T, Utili S, Crosta GB (2016) Rockslide and impulse wave modelling in the Vajont reservoir by DEM-CFD analyses. Rock Mech Rock Eng 49(6):2437–2456

    Article  Google Scholar 

  66. Zhou Q, Xu W-J, Dong X-Y (2021) SPH-DEM coupling method based on GPU and its application to the landslide tsunami. Part 1: Method and validation. Acta Geotech

  67. Zitti G, Ancey C, Postacchini M, Brocchini M (2017) Snow avalanches striking water basins: behaviour of the avalanche’s centre of mass and front. Nat Hazards 88(3):1297–1323

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the project of “Natural Science Foundation of China (51879142, 52079067)” and “Research Fund Program of the State Key Laboratory of Hydroscience and Engineering (2020-KY-04).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jie Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, WJ., Zhou, Q. & Dong, XY. SPH–DEM coupling method based on GPU and its application to the landslide tsunami. Part II: reproduction of the Vajont landslide tsunami. Acta Geotech. 17, 2121–2137 (2022). https://doi.org/10.1007/s11440-021-01387-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01387-3

Keywords

Navigation