Skip to main content
Log in

Thermal properties of GMZ bentonite pellet mixtures subjected to different temperatures for high-level radioactive waste repository

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Bentonite pellets or their mixtures with powdered bentonite are potential buffer/backfill materials for the deep geological disposal of high-level radioactive waste (HLW) and are used to backfill the joints between neighbouring bentonite blocks or the construction gaps between bentonite blocks in the buffer layer and surrounding rock. Knowledge of the thermal properties of buffer/backfill materials is essential for the thermal evaluation and design of HLW repositories. The thermal properties were measured on a mixture of GMZ07 bentonite pellets and powdered bentonite with 70% pellet content over a wide range of water contents, dry densities, and temperatures. The test results revealed that the thermal conductivity of the specimen compacted with pure bentonite powder was higher than that of the mixture. This was due to the different pore-size distributions that influenced the conductive heat transfer in the specimens. The difference in thermal conductivity between the two types of specimens made by different methods decreased with increasing dry density, which was mainly attributed to the preparation of bentonite pellets using a compaction–crushing method. In addition, the destruction of bentonite pellets increased gradually with increasing dry density. The thermal conductivity, thermal diffusivity, and volumetric heat capacity of the mixture increased with increasing temperature. For a given dry density, the size of the inter-aggregate pores and aggregates of the mixture was larger than that of compacted pure GMZ07 bentonite, resulting in a decrease in the extent or quality of connections between neighbouring aggregates and a reduction in the thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Åberg A (2009) Effects of water inflow on the buffer-an experimental study.  SKB TR-09-29. SKB, Stockholm, Sweden

  2. Andersson L, Sanden T (2012) Optimization of backfill pellet properties AASKAR DP2-Laboratory tests.  SKB TR-12-18. SKB, Stockholm, Sweden

  3. Angino EE (1977) High-level and long-lived radioactive waste disposal. Science 198(4320):885–890. https://doi.org/10.1126/science.198.4320.885

    Article  Google Scholar 

  4. Bastiaens W, Bernier F, Li XL (2007) SELFRAC: Experiments and conclusions on fracturing, self-healing and self-sealing processes in clays. Phys Chem Earth 32(8–14):600–615. https://doi.org/10.1016/j.pce.2006.04.026

    Article  Google Scholar 

  5. Cho WJ, Lee JO, Kwon S (2011) An empirical model for the thermal conductivity of compacted bentonite and a bentonite-sand mixture. Heat Mass Transf 47(11):1385–1393. https://doi.org/10.1007/s00231-011-0800-1

    Article  Google Scholar 

  6. Cho WJ, Lee JW, Kwon SK (2012) An analysis of the factors affecting the hydraulic conductivity and swelling pressure of kyungju ca-bentonite for use as a clay-based sealing material for a high-level waste repository. Nucl Eng Technol 44(1):89–102. https://doi.org/10.5516/NET.06.2011.018

    Article  Google Scholar 

  7. Delage P, Audiguier M, Cui YJ, Howat MD (1996) Microstructure of a compacted silt. Can Geotech J 33:150–158. https://doi.org/10.1139/t96-030

    Article  Google Scholar 

  8. Delage P, Cui Y, Tang A (2010) Clays in radioactive waste disposal. J Rock Mech Geotech Eng 2(2):111–123. https://doi.org/10.3724/SP.J.1235.2010.00111

    Article  Google Scholar 

  9. Engelhardt I, Finsterle S (2003) Thermal-hydraulic experiments with bentonite/crushed rock mixtures and estimation of effective parameters by inverse modeling. Appl Clay Sci 23(1–4):111–120. https://doi.org/10.1016/S0169-1317(03)00093-0

    Article  Google Scholar 

  10. Estabragh AR, Khosravi F, Javadi AA (2016) Effect of thermal history on the properties of bentonite. Environ Earth Sci 75(8):657. https://doi.org/10.1007/s12665-016-5416-9

    Article  Google Scholar 

  11. Gao Y, Li Z, Sun DA, Yu HH (2021) A simple method for predicting the hydraulic properties of unsaturated soils with different void ratios. Soil Tillage Res 209:104913. https://doi.org/10.1016/j.still.2020.104913

    Article  Google Scholar 

  12. Hökmark H, Fälth B (2003) Thermal dimensioning of the deep repository. SKB TR03-09. SKB, Stockholm, Sweden

  13. Imbert C, Villar MV (2006) Hydro-mechanical response of a bentonite pellets/powder mixture upon infiltration. Appl Clay Sci 32(3–4):197–209. https://doi.org/10.1016/j.clay.2006.01.005

    Article  Google Scholar 

  14. Ito H (2006) Compaction properties of granular bentonites. Appl Clay Sci 31(1–2):47–55. https://doi.org/10.1016/j.clay.2005.08.005

    Article  Google Scholar 

  15. Jobmann M, Buntebarth G (2009) Influence of graphite and quartz addition on the thermo–physical properties of bentonite for sealing heat-generating radioactive waste. Appl Clay Sci 44(3–4):206–210. https://doi.org/10.1016/j.clay.2009.01.016

    Article  Google Scholar 

  16. Ju Z, Ren T, Hu C (2011) Soil thermal conductivity as influenced by aggregation at intermediate water contents. Soil Sci Soc Am J 75(1):26–29. https://doi.org/10.2136/sssaj2010.0050N

    Article  Google Scholar 

  17. Kale RC, Ravi K (2018) Influence of thermal loading on index and physicochemical properties of Barmer bentonite. Appl Clay Sci 165:22–39. https://doi.org/10.1016/j.clay.2018.07.039

    Article  Google Scholar 

  18. Komine H (2004) Simplified evaluation for swelling characteristics of bentonites. Eng Geol 71(3):265–279. https://doi.org/10.1016/s0013-7952(03)00140-6

    Article  Google Scholar 

  19. Lee JO, Choi H, Lee JY (2016) Thermal conductivity of compacted bentonite as a buffer material for a high-level radioactive waste repository. Ann Nucl Energy 94:848–855. https://doi.org/10.1016/j.anucene.2016.04.053

    Article  Google Scholar 

  20. Liu X, Cai G, Liu L, Liu S, Puppala AJ (2019) Thermo-hydro-mechanical properties of bentonite-sand-graphite-polypropylene fiber mixtures as buffer materials for a high-level radioactive waste repository. Int J Heat Mass Transf 141:981–994. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.015

    Article  Google Scholar 

  21. Liu YM, Cai MF, Wang J (2007) Thermal conductivity of buffer material for high-level waste disposal. Chin J Geotech Eng 26:3891–3896 ((in Chinese))

    Google Scholar 

  22. Lloret A, Villar MV (2007) Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted FEBEX bentonite. Phys Chem Earth 32(8–14):701–715. https://doi.org/10.1016/j.pce.2006.03.002

    Article  Google Scholar 

  23. Maak P (2006) Used fuel container requirements. Ontario Power Generation Preliminary Design Requirements, Ontario, Canada

  24. Martikainen J, Schatz T (2018) Initial buffer and backfill wetting: pellet-filling component. Posiva OY, Eurajoki, Finland

  25. Mokni N, Barnichon JD, Dick P, Nguyen TS (2016) Effect of technological macro voids on the performance of compacted bentonite/sand seals for deep geological repositories. Int J Rock Mech Min Sci 88:87–97. https://doi.org/10.1016/j.ijrmms.2016.07.011

    Article  Google Scholar 

  26. Nikolaev IV, Leong WH, Rosen MA (2013) Experimental investigation of soil thermal conductivity over a wide temperature range. Int J Thermophys 34(6):1110–1129. https://doi.org/10.1007/s10765-013-1456-5

    Article  Google Scholar 

  27. Philip JR, Vries DAD (1957) Moisture movement in porous materials under temperature gradients. Trans Am Geophys Union 38:222–232. https://doi.org/10.1029/TR038i002p00222

    Article  Google Scholar 

  28. Poller A, Enssle CP, Mayer G, Croisé J, Wendling J (2011) Repository-scale modeling of the long-term hydraulic perturbation induced by gas and heat generation in a geological repository for high-and intermediate-level radioactive waste: methodology and example of application. Transp Porous Med 90(1):77–94. https://doi.org/10.1007/s11242-011-9725-x

    Article  Google Scholar 

  29. Posiva O (2003) Nuclear waste management of the olkiluoto and loviisa power plants: programme for research, development and technical design for 2004–2006. POSIVA-TKS–2003. Posiva OY, Eurajoki, Finland

  30. Romero E, Della Vecchia G, Jommi C (2011) An insight into the water retention properties of compacted clayey soils. Géotechnique 64(4):313–328. https://doi.org/10.1680/geot.2011.61.4.313

    Article  Google Scholar 

  31. Romero E, Gens A, Lloret A (1999) Water permeability, water retention and microstructure of unsaturated Boom clay. Eng Geol 54:117–127. https://doi.org/10.1016/S0013-7952(99)00067-8

    Article  Google Scholar 

  32. Sakaguchi I, Momose T, Kasubuchi T (2007) Decrease in thermal conductivity with increasing temperature in nearly dry sandy soil. Eur J Soil Sci 58(1):92–97. https://doi.org/10.1111/j.13652389.2006.00803.x

    Article  Google Scholar 

  33. Sandén T, Börgesson L (2014) System design of backfill-methods for water handling. KBSR-14–09. SKB, Stockholm, Sweden

  34. Sellin P, Leupin OX (2013) The use of clay as an engineered barrier in radioactive-waste management–a review. Clay Clay Miner 61(6):477–498. https://doi.org/10.1346/CCMN.2013.0610601

    Article  Google Scholar 

  35. SKBF KBS (1983) Final storage of spent nuclear fuel-KBS-3. SKB, Stockholm, Sweden

  36. Smits KM, Sakaki T, Howington SE, Peters JF, Illangasekare TH (2013) Temperature dependence of thermal properties of sands across a wide range of temperatures (30–70 °C). Vadose Zone J 138(4):2256–2265. https://doi.org/10.2136/vzj2012.0033

    Article  Google Scholar 

  37. Tang AM, Cui YJ, Le TT (2008) A study on the thermal conductivity of compacted bentonites. Appl Clay Sci 41(3):181–189. https://doi.org/10.1016/j.clay.2007.11.001

    Article  Google Scholar 

  38. Usowicz B, Lipiec J, Usowicz JB, Marczewski W (2013) Effects of aggregate size on soil thermal conductivity: comparison of measured and model-predicted data. Int J Heat Mass Transf 57(2):536–541. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.067

    Article  Google Scholar 

  39. Villar MV, García-Siñeriz JL, Bárcena I, Lloret A (2005) State of the bentonite barrier after five years operation of an in situ test simulating a high level radioactive waste repository. Eng Geol 80(3–4):175–198. https://doi.org/10.1016/j.enggeo.2005.05.001

    Article  Google Scholar 

  40. Villar MV, Gómez-Espina R, Lloret A (2010) Experimental investigation into temperature effect on hydro-mechanical behaviours of bentonite. J Rock Mech Geotech Eng 2(1):71–78. https://doi.org/10.3724/SP.J.1235.2010.00071

    Article  Google Scholar 

  41. Villar MV, Lloret A (2004) Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite. Appl Clay Sci 26(1–4):337–350. https://doi.org/10.1016/j.clay.2003.12.026

    Article  Google Scholar 

  42. Wang J, Su R, Chen W, Guo Y, Jin Y, Wen Z, Liu Y (2006) Deep geological disposal of high-level radioactive wastes in China. Chin J Rock Mech Eng 25(4):649–658

    Google Scholar 

  43. Wang Q, Tang AM, Cui YJ, Delage P, Barnichon JD, Ye WM (2013) The effects of technological voids on the hydro-mechanical behaviour of compacted bentonite-sand mixture. Soils Found 53(2):232–245. https://doi.org/10.1016/j.sandf.2013.02.004

    Article  Google Scholar 

  44. Wersin P, Johnson LH, McKinley IG (2007) Performance of the bentonite barrier at temperatures beyond 100 °C: a critical review. Phys Chem Earth 32(8):780–788. https://doi.org/10.1016/j.pce.2006.02.051

    Article  Google Scholar 

  45. Xu YS, Sun DA, Zeng ZT, Lv HB (2019) Temperature dependence of apparent thermal conductivity of compacted bentonites as buffer material for high-level radioactive waste repository. Appl Clay Sci 174:10–14. https://doi.org/10.1016/j.clay.2019.03.017

    Article  Google Scholar 

  46. Xu L, Ye WM, Chen B, Chen YG, Cui YJ (2016) Experimental investigations on thermo-hydro-mechanical properties of compacted GMZ01 bentonite-sand mixture using as buffer materials. Eng Geol 213:46–54. https://doi.org/10.1016/j.enggeo.2016.08.015

    Article  Google Scholar 

  47. Yao YP, Zhou AN (2013) Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays. Geotechnique 63(15):1328–1345. https://doi.org/10.1680/geot.13.P.035

    Article  Google Scholar 

  48. Ye WM, Wan M, Chen B, Chen YG, Cui YJ, Wang J (2012) Temperature effects on the unsaturated permeability of the densely compacted GMZ01 bentonite under confined conditions. Eng Geol 126:1–7. https://doi.org/10.1016/j.enggeo.2011.10.011

    Article  Google Scholar 

  49. Ye WM, Wan M, Chen B, Chen YG, Cui YJ, Wang J (2013) Temperature effects on the swelling pressure and saturated hydraulic conductivity of the compacted GMZ01 bentonite. Environ Earth Sci 68(1):281–288. https://doi.org/10.1007/s12665-012-1738-4

    Article  Google Scholar 

  50. Ye WM, Wang Q, Pan H, Chen B (2010) The thermal conductivity of high compacted GMZ01 bentonite. Chin J Geotech Eng 32(6):821–826 ((in Chinese))

    Google Scholar 

  51. Zhang HY, Wang XW, Liu P, Yan M, Peng Y (2016) Sealing and healing of compacted bentonite block joints in HLW disposal. Chin J Rock Mech Eng 35(S2):3605–3614 ((in Chinese))

    Google Scholar 

  52. Zhao J, Chen L, Collin F, Liu Y, Wang J (2016) Numerical modeling of coupled thermal-hydro-mechanical behavior of GMZ bentonite in the China-Mock-up test. Eng Geol 214:116–126. https://doi.org/10.1016/j.enggeo.2016.09.015

    Article  Google Scholar 

  53. Zhou XY, Sun DA, Xu YF (2021) A new thermal analysis model with three heat conduction layers in the nuclear waste repository. Nucl Eng Des 371: 110929. https://doi.org/10.1016/j.nucengdes.2020.110929

    Article  Google Scholar 

  54. Zhou XY, Xu YS, Sun DA, Tan YZ, Xu YF (2021) Three-dimensional thermal-hydraulic coupled analysis in the nuclear waste repository. Ann Nucl Energy 151:107866. https://doi.org/10.1016/j.anucene.2020.107866

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China [Grant Nos. 42077229, 41962014] and the Initial Scientific Research Fund of Young Teachers in Fujian University of Technology [Grant No. GY-Z21013]. Many thanks to Professor Xian-feng Liu at Southwest Jiaotong University for performing the MIP tests on GMZ07 mixtures.

Author information

Authors and Affiliations

Authors

Contributions

YX and DS contriibuted to conceptualization, methodology. YX contriibuted to data curation, writing—original draft preparation. YX and XZ contriibuted to visualization and investigation. ZZ and DS contriibuted to supervision. YX and XZ contriibuted to resources. YX and DS contriibuted to writing—reviewing and editing. ZZ contriibuted to funding acquisition.

Corresponding author

Correspondence to De’an Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhou, X., Sun, D. et al. Thermal properties of GMZ bentonite pellet mixtures subjected to different temperatures for high-level radioactive waste repository. Acta Geotech. 17, 981–992 (2022). https://doi.org/10.1007/s11440-021-01244-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01244-3

Keywords

Navigation