Skip to main content
Log in

Analytical solutions for organic contaminant diffusion in triple-layer composite liner system considering the effect of degradation

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper presents analytical solutions for predicting one-dimensional diffusion of an organic contaminant through a triple-layer composite liner system comprising a geomembrane (GM), a geosynthetic clay liner (GCL), and a compacted clay liner (CCL). We consider two different bottom boundary conditions, i.e., fixed-concentration bottom boundary and semi-infinite bottom boundary, for which the methods of separation of variables and Laplace transform, respectively, are used to obtain the analytical solutions. The proposed analytical solutions are then verified against the CST3 numerical model and an analytical solution available in the literature. Using the verified analytical solutions, a series of parametric studies is conducted to investigate the effect of several relevant parameters on contaminant transport through the GM/GCL/CCL liner system. The results indicate that the CCL thickness, the CCL distribution coefficient, and the effective diffusion coefficient of CCL have significant impact on contaminant diffusion in the GM/GCL/CCL liner system, whereas the effective diffusion coefficient of the GCL, the diffusion coefficient of the GM, and the partition coefficient of the GM have negligible effect on contaminant diffusion in the GM/GCL/CCL liner system. The analytical solutions presented herein can be used to aid the design of a triple-layer composite liner system and the verification of other numerical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(C_{0}\) :

Contaminant concentration in leachate

\(D_{\text{ccl}}\) :

Effective diffusion coefficient for CCL

\(D_{\text{gcl}}\) :

Effective diffusion coefficient for GCL

\(D_{\text{gm}}\) :

GM diffusion coefficient

\(J\) :

Contaminant mass flux

\(J_{ss}\) :

Steady-state contaminant mass flux

\(K_{d}\) :

Distribution coefficient

\(K_{{d{\text{ccl}}}}\) :

Distribution coefficient for CCL

\(K_{{d{\text{gcl}}}}\) :

Partition coefficient between GM and GCL

\(K_{{d{\text{gm}}}}\) :

Partition coefficient for the organic contaminant and GM

\(L_{\text{ccl}}\) :

Thickness of CCL

\(L_{\text{gcl}}\) :

Thickness of GCL

\(L_{\text{gm}}\) :

Thickness of GM

\(n_{\text{ccl}}\) :

Porosity of CCL

\(n_{\text{gcl}}\) :

Porosity of GCL

\(R_{{d{\text{ccl}}}}\) :

Retardation factor for CCL

\(t_{1/2}\) :

Contaminant half-life

\(\lambda\) :

First-order decay constant

\(\rho_{d}\) :

Dry density

\(\rho_{{d{\text{ccl}}}}\) :

Dry density of CCL

References

  1. Barroso M, Touze-Foltz N, von Maubeuge K, Pierson P (2006) Laboratory investigation of flow rate through composite liner consisting of a geomembrane, a GCL and a soil liner. Geotext Geomembr 24(3):139–155

    Article  Google Scholar 

  2. Barroso MCP, Lopes MGDA, Bergamini G (2010) Effect of the waste pressure on fluid migration through geomembrane defects. In: Proceedings 9th international conference on geosynthetics, Guaruja, Brazil, pp 959–962

  3. Benson C, Zhai H, Wang X (1994) Estimating the hydraulic conductivity of compacted clay liners. J Geotech Eng 120:366–387

    Article  Google Scholar 

  4. Benson CH, Trast JM (1995) Hydraulic conductivity of thirteen compacted clays. Clays Clay Miner 43(6):669–681

    Article  Google Scholar 

  5. Bonaparte R, Daniel DE, Koerner RM (2002) Assessment and recommendations for improving the performance of waste containment systems. EPA Report EPA/600/R-02/099, U.S. Environmental Protection Agency, Washington, DC

  6. Chinese Ministry of Construction (CNMC) (2007) Technical code for liner system of municipal solid waste landfill (CJJ 113–2007). China Architecture and Building Press, Beijing (in Chinese)

    Google Scholar 

  7. Chen Y, Wang Y, Xie H (2015) Breakthrough time-based design of landfill composite liners. Geotext Geomembr 43:196–206

    Article  Google Scholar 

  8. Cleall PJ, Li YC (2011) Analytical solution for diffusion of VOCs through composite landfill Liners. J Geotech Geoenviron Eng 137:850–854

    Article  Google Scholar 

  9. Edil TB (2003) A review of aqueous-phase VOC transport in modern landfill liners. Waste Manag 23(7):561–671

    Article  Google Scholar 

  10. El-Zein A, Rowe RK (2008) Impact on groundwater of concurrent leakage and diffusion of dichloromethane through geomembranes in landfill liners. Geosynth Int 15(1):55–71

    Article  Google Scholar 

  11. El-Zein A, McCarroll I, Touze-Foltz N (2012) Three-dimensional finite-element analyses of seepage and contaminant transport through composite geosynthetics clay liners with multiple defects. Geotext Geomembr 33:34–42

    Article  Google Scholar 

  12. USEPA (2002) National primary drinking water regulations. United States Environmental Protection Agency, Washington

    Google Scholar 

  13. Estornell P, Daniel DE (1992) Hydraulic conductivity of three geosynthetic clay liners. J Geotech Eng 118(10):1592–1606

    Article  Google Scholar 

  14. Eun J, Tinjum JM, Benson CH, Edil TB (2017) Comparison of volatile organic compound transport in composite liners with HDPE and ethylene-vinyl alcohol co-extruded geomembranes. J Geotech Geoenviron Eng 143(6):04017010

    Article  Google Scholar 

  15. Farquhar GJ (1989) Leachate: production and characterization. Can J Civ Eng 16:317–325

    Article  Google Scholar 

  16. Foose GJ (2002) Transit-time design for diffusion through composite liners. J Geotech Geoenviron Eng 7(590):590–601

    Article  Google Scholar 

  17. Foose GJ, Benson CH, Edil TB (2002) Comparison of solute transport in three composite liners. J Geotech Geoenviron Eng 5(391):391–403

    Article  Google Scholar 

  18. Fox PJ (2007) Coupled large strain consolidation and solute transport. II: model verification and simulation results. J Geotech Geoenviron Eng 133(1):16–29

    Article  Google Scholar 

  19. Fox PJ, Lee J (2008) Model for consolidation-induced solute transport with nonlinear and nonequilibrium sorption. Int J Geomech 8(3):188–198

    Article  Google Scholar 

  20. Fox PJ, Thielmann SS, Stern AN, Athanassopoulos C (2014) Interface shear damage to a HDPE geomembrane. I: gravelly compacted clay liner. J Geotech Geoenviron Eng 140(8):04014039

    Article  Google Scholar 

  21. Harpur WA, Wilson-Fahmy RF, Koerner RM (1993) Evaluation of the contact between geosynthetic clay liners and geomembranes in terms of transmissivity. In: Proceedings of the seventh GRI conference on geosynthetic liners systems: innovations, concerns and design, industrial fabrics association international, St. Paul, MN, pp 138–149

  22. Hendry MJ, Barbour SL, Boldt-Leppin BEJ, Reifferscheid LJ, Wassenaar LI (2009) A comparison of laboratory and field based determinations of molecular diffusion coefficients in a low permeability geologic medium. Environ Sci Technol 43(17):6730–6736

    Article  Google Scholar 

  23. Hoor A, Rowe RK (2013) Potential for desiccation of geosynthetic clay liners used in barrier systems. J Geotech Geoenviron Eng 139(10):1648–1664

    Article  Google Scholar 

  24. Hrapovic L (2000) Laboratory study of intrinsic degradation of organic pollutants in compacted clayey soil. In: Dissertation, The University of Western Ontario

  25. Joo JC, Kim JY, Nam K (2005) Estimation of mass transport parameters of organic compounds through high density polyethylene geomembranes using a modified double-compartment apparatus. J Environ Eng 131(5):790–799

    Article  Google Scholar 

  26. Kalbe U, Muller W, Berger W, Eckardt J (2002) Transport of organic contaminants within composite liner systems. Appl Clay Sci 21:67–76

    Article  Google Scholar 

  27. Klett N, Edil TB, Benson CH, Connelly J (2005) Evaluation of volatile organic compounds in Wisconsin landfill leachate and lysimeter samples. Final Report to the University of Wisconsin System Groundwater Research Program, Department of Civil and Environmental Engineering, University of Wisconsin, Madison, Wisconsin

  28. Lake CB, Rowe RK (2000) Diffusion of sodium and chloride through geosynthetic clay liner. Geotext Geomembr 18(2–4):103–131

    Article  Google Scholar 

  29. Lake CB, Rowe RK (2004) Volatile organic compound diffusion and sorption coefficients for a needle-punched GCL. Geosynth Int 11(4):257–272

    Article  Google Scholar 

  30. Lake CB, Rowe RK (2005) A comparative assessment of volatile organic compound (VOC) sorption to various types of potential GCL bentonites. Geotext Geomembr 23:323–347

    Article  Google Scholar 

  31. Li YC, Cleall PJ (2010) Analytical solutions for contaminant diffusion in double-layered porous media. J Geotech Geoenviron Eng 136(11):1542–1554

    Article  Google Scholar 

  32. Liu CX, Ball WP (1998) Analytical modeling of diffusion-limited contamination and decontamination in a two-layer porous medium. Adv Water Resour 21(4):297–313

    Article  Google Scholar 

  33. McWatters RS, Rowe RK (2010) Diffusion transport of VOCs through LLDPE and two coextruded geomembranes. J Geotech Geoenviron Eng 136(9):1167–1171

    Article  Google Scholar 

  34. Mendes MJA, Touze-Foltz N, Palmeira EM, Pierson P (2010) Influence of structural and material properties of GCLs on interface flow in composite liners due to geomembrane defects. Geosynth Int 17(1):34–47

    Article  Google Scholar 

  35. MOE (2002) Safe drinking water act. Ministry of the Environment, Queens Printer for Ontario, Ontario

    Google Scholar 

  36. Montgomery JH, Welkom LM (1990) Groundwater chemicals desk reference. Lewis Publishers, Michigan, p 638

    Google Scholar 

  37. Mueller W, Jakob R, Tatzky-Gerth R, August H (1998) Solubilities, diffusion, and partition coefficients of organic pollutants in HDPE geomembranes: experimental results and calculations. In: Proceedings of the sixth international conference on geosynthetics, Atlanta, Industrial Fabrics Association International, St. Paul, Minn., 239–248

  38. Othman MA, Bonaparte R, Gross BA (1997) Preliminary results of composite liner field performance study. Geotext Geomembr 15(4–6):289–312

    Article  Google Scholar 

  39. Park JK, Nibras M (1993) Mass flux of organic chemicals through polyethylene geomembranes. Water Environ Res 65(3):227–237

    Article  Google Scholar 

  40. Park JK, Sakti JP, Hoopes JA (1996) Transport of organic compounds in thermoplastic geomembranes I: mathematical model. J Environ Eng 122(9):800–806

    Article  Google Scholar 

  41. Petrov RJ, Rowe RK (1997) Geosynthetic clay liner (GCL)—chemical compatibility by hydraulic conductivity testing and factors impacting its performance. Can Geotech J 34(6):863–885

    Article  Google Scholar 

  42. Petrov RJ, Rowe RK, Quigley RM (1997) Selected factors influencing GCL hydraulic conductivity. J Geotech Geoenviron Eng 123(8):683–695

    Article  Google Scholar 

  43. Pu H, Fox PJ (2016) Model for coupled large strain consolidation and solute transport in layered soils. Int J Geomech 16(2):04015064

    Article  Google Scholar 

  44. Pu H, Fox PJ, Shackelford CD (2016) Assessment of consolidation-induced contaminant transport for compacted clay liner systems. J Geotech Geoenviron Eng 142(3):04015091

    Article  Google Scholar 

  45. Pu H, Shackelford CD, Fox PJ (2016) Assessment of consolidation-induced VOC transport for a GML/GCL composite liner system. J Geotech Geoenviron Eng 142(11):04016053

    Article  Google Scholar 

  46. Pu H, Qiu J, Zhang R, Zheng J (2018) Assessment of consolidation-induced VOC transport for a GML/GCL/CCL composite liner system. Geotext Geomembr 46(4):455–469

    Article  Google Scholar 

  47. Rowe RK (1995) Leachate characterization for MSW landfills. In: Proceedings Sardinia 95, fifth international symposium on sanitary landfill, CISA, Cagliari, Italy, vol 2, pp 327–344

  48. Rowe RK (1998) Geosynthetics and the minimization of contaminant migration through barrier systems beneath solid waste. In: Proceedings of the sixth international conference on geosynthetics, Atlanta, Industrial Fabrics Association International, St. Paul, MN, pp 27–102

  49. Rowe RK (2005) Long-term performance of contaminant barrier systems (45th Rankine Lecture). Géotechnique 55(9):631–678

    Article  Google Scholar 

  50. Rowe RK (2012) Short- and long-term leakage through composite liners (The 7th Arthur Casagrande Lecture). Can Geotech J 49(2):141–169

    Article  Google Scholar 

  51. Rowe RK, Booker JR (2005) POLLUTEv7: Pollutant migration through a nonhomogeneous soil. Distributed by GAEA Environmental Engineering Ltd, Whitby

    Google Scholar 

  52. Rowe RK, Mukunoki T, Sangam HP (2005) BTEX diffusion and sorption for a geosynthetic clay liner at two temperatures. J Geotech Geoenviron Eng 131(10):1211–1221

    Article  Google Scholar 

  53. Rowe RK, Quigley RM, Brachman RWL, Booker JR (2004) Barrier systems for waste disposal. Spon Press, London

    Google Scholar 

  54. Ruhl JL, Daniel DE (1997) Geosynthetic clay liners permeated with chemical solutions and leachates. J Geotech Geoenviron Eng 123(4):369–381

    Article  Google Scholar 

  55. Sangam HP, Rowe RK (2001) Migration of dilute aqueous organic pollutants through HDPE geomembranes. Geotext Geomembr 19(6):329–357

    Article  Google Scholar 

  56. Sangam HP, Rowe RK (2005) Effect of surface fluorination on diffusion through a high density polyethylene geomembrane. J Geotech Geoenviron Eng 131(6):694–704

    Article  Google Scholar 

  57. Shackelford CD (1990) Transit-time design of earthen barriers. Eng Geol 29:79–94

    Article  Google Scholar 

  58. Shackelford CD (1994) Waste-soil interactions that alter hydraulic conductivity. In: Daniel DE, Trautwein SJ (eds) STP 1142 hydraulic conductivity and waste contaminant transport in soil. ASTM, West Conshohoken, pp 111–168

    Chapter  Google Scholar 

  59. Shackelford CD (2014) The ISSMGE Kerry Rowe Lecture: the role of diffusion in environmental geotechnics. Can Geotech J 51(11):1219–1242

    Article  Google Scholar 

  60. USEPA (United States Environmental Protection Agency) (2014) Resource conservation and recovery act orientation manual, vol EPA530-F-11-003. USEPA, Washington

    Google Scholar 

  61. Wu X, Shi J, He J (2016) Analytical solutions for diffusion of organic contaminant through GCL triple-layer composite liner considering degradation in liner. Environ Earth Sci 75:1371

    Article  Google Scholar 

  62. Xie H, Lou Z, Chen Y, Jin A, Zhan TL, Tang X (2013) An analytical solution to organic contaminant diffusion through composite liners considering the effect of degradation. Geotext Geomembr 36:10–18

    Article  Google Scholar 

  63. Xie H, Thomas HR, Chen Y, Sedighi M, Zhan TL, Tang X (2015) Diffusion of organic contaminants in triple-layer composite liners: an analytical modeling approach. Acta Geotech 10:255–262

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this investigation was provided by the National Key R&D Program of China (Grant No. 2016YFC0800200), the National Natural Science Foundation of China (Grant No. 51678268), and the Fundamental Research Funds for the Central Universities of China (Grant No. HUST-2016YXMS101). This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongjun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The general solution to the governing Eqs. (1) and (2) can be written as follows:

$$C_{\text{gm}} (z) = A_{1} z + A_{2}$$
(29)
$$C_{\text{gcl}} (z) = B_{1} z + B_{2}$$
(30)

where \(A_{1}\) to \(B_{2}\) are the parameters to be determined by substituting the above equations into Eqs. (6) to (9) as follows:

$$A_{1} = \frac{{n_{\text{gcl}} D_{\text{gcl}} B_{1} }}{{D_{\text{gm}} }}$$
(31)
$$A_{2} = K_{{d{\text{gm}}}} C_{0} - \frac{{n_{\text{gcl}} D_{\text{gcl}} B_{1} (L_{\text{ccl}} + L_{\text{gcl}} + L_{\text{gm}} )}}{{D_{\text{gm}} }}$$
(32)
$$B_{ 2} = \frac{{K_{{d{\text{gm}}}} C_{0} }}{{K_{{d{\text{gcl}}}} }} - \frac{{n_{\text{gcl}} D_{\text{gcl}} L_{\text{gm}} B_{1} }}{{K_{{d{\text{gcl}}}} D_{\text{gm}} }} - B_{1} (L_{\text{ccl}} + L_{\text{gcl}} )$$
(33)
$$\frac{{K_{{d{\text{gm}}}} C_{0} }}{{K_{{d{\text{gcl}}}} }} - \frac{{n_{\text{gcl}} D_{\text{gcl}} L_{\text{gm}} B_{1} }}{{K_{{d{\text{gcl}}}} D_{\text{gm}} }} - B_{1} L_{\text{gcl}} = \left. {C_{\text{ccl}} (z,t)} \right|_{{z = L_{\text{ccl}} }}$$
(34)

Assume that \(C_{\text{ccl}} (z,t)\) is determined by the following equation:

$$C_{\text{ccl}} (z,t) = u_{\text{ccl}} (z,t)\exp ( - \lambda t)$$
(35)

Substituting Eq. (35) into Eq. (3), Eq. (3) can then be expressed as follows:

$$a^{2} \frac{{\partial^{2} u_{\text{ccl}} (z,t)}}{{\partial z^{2} }} = \frac{{\partial u_{\text{ccl}} (z,t)}}{\partial t}$$
(36)

The initial condition of Eq. (36) can be expressed as follows:

$$\left. {u_{\text{ccl}} (z,t)} \right|_{t = 0} = 0$$
(37)

The bottom and top boundary conditions of Eq. (36) can be expressed as follows:

$$\left. {u_{\text{ccl}} (z,t)} \right|_{z = 0} = 0$$
(38)
$$\left. {\frac{{\partial u_{\text{ccl}} (z,t)}}{\partial z}} \right|_{{z = L_{\text{ccl}} }} = \eta B_{1} \exp (\lambda t)$$
(39)

Assume that \(u_{\text{ccl}} (z,t)\) is determined by the following equation:

$$u_{\text{ccl}} (z,t) = v(z,t) + w(z,t)$$
(40)

where

$$v(z,t) = \eta B_{1} z\exp (\lambda t)$$
(41)

Substituting Eqs. (40) and (41) into Eqs. (3639) leads to the governing equation of \(w(z,t)\) and the initial and boundary conditions of \(w(z,t)\). The \(w(z,t)\) is determined by the following equation:

$$a^{2} \frac{{\partial^{2} w(z,t)}}{{\partial z^{2} }} = \frac{\partial w(z,t)}{\partial t} + \eta B_{1} \lambda z\exp (\lambda t)$$
(42)

The initial condition of Eq. (42) can be expressed as follows:

$$\left. {w(z,t)} \right|_{t = 0} = - \eta B_{1} z$$
(43)

The bottom and top boundary conditions of Eq. (42) can be expressed as follows:

$$\left. {w(z,t)} \right|_{z = 0} = 0$$
(44)
$$\left. {\frac{\partial w(z,t)}{\partial z}} \right|_{{z = L_{\text{ccl}} }} = 0$$
(45)

Assume that \(w(z,t)\) is determined by the following equation:

$$w(z,t) = w^{\rm I} (z,t) + w^{{{\rm I}{\rm I}}} (z,t)$$
(46)

where \(w^{\rm I} (z,t)\) is determined by:

$$a^{2} \frac{{\partial^{2} w^{\rm I} (z,t)}}{{\partial z^{2} }} = \frac{{\partial w^{\rm I} (z,t)}}{\partial t}$$
(47)

The initial condition of Eq. (47) can be expressed as follows:

$$\left. {w^{\rm I} (z,t)} \right|_{t = 0} = - \eta B_{1} z$$
(48)

The bottom and top boundary conditions of Eq. (47) can be expressed as follows:

$$\left. {w^{\rm I} (z,t)} \right|_{z = 0} = 0$$
(49)
$$\left. {\frac{{\partial w^{\rm I} (z,t)}}{\partial z}} \right|_{{z = L_{\text{ccl}} }} = 0$$
(50)

The \(w^{{{\rm I}{\rm I}}} (z,t)\) in Eq. (46) is determined by the following equation:

$$a^{2} \frac{{\partial^{2} w^{{{\rm I}{\rm I}}} (z,t)}}{{\partial z^{2} }} = \frac{{\partial w^{{{\rm I}{\rm I}}} (z,t)}}{\partial t} + \eta B_{1} \lambda z\exp (\lambda t)$$
(51)

The initial condition of Eq. (51) can be expressed as follows:

$$\left. {w^{{{\rm I}{\rm I}}} (z,t)} \right|_{t = 0} = 0$$
(52)

The bottom and top boundary conditions of Eq. (51) can be expressed as follows:

$$\left. {w^{{{\rm I}{\rm I}}} (z,t)} \right|_{z = 0} = 0$$
(53)
$$\left. {\frac{{\partial w^{{{\rm I}{\rm I}}} (z,t)}}{\partial z}} \right|_{{z = L_{\text{ccl}} }} = 0$$
(54)

The solution to Eqs. (47) and (51) can be expressed as follows:

$$w^{\rm I} (z,t) = \frac{{2\eta B_{1} }}{{L_{\text{ccl}} }}\sum\limits_{k = 0}^{\infty } {\left\{ {\frac{{( - 1)^{k + 1} }}{{\lambda_{\alpha }^{2} }}\exp ( - \lambda_{\alpha }^{2} a^{2} t)\sin (\lambda_{\alpha } z)} \right\}}$$
(55)
$$\begin{aligned} w^{{{\rm I}{\rm I}}} (z,t) = \frac{{2\eta B_{1} }}{{L_{\text{ccl}} }}\sum\limits_{k = 0}^{\infty } {\left\{ {\frac{{\lambda ( - 1)^{k + 1} }}{{\lambda_{\alpha }^{2} \lambda + a^{2} \lambda_{\alpha }^{4} }}\left[ {\exp (\lambda t) - \exp ( - \lambda_{\alpha }^{2} a^{2} t)} \right]\sin (\lambda_{\alpha } z)} \right\}} \hfill \\ \hfill \\ \end{aligned}$$
(56)

Substituting Eqs. (55) and (56) into Eq. (46) leads to the expression of \(w(z,t)\). Substituting the expression of \(v(z,t)\) and \(w(z,t)\) into Eq. (40) and uniting Eq. (35) leads to the expression of \(C_{\text{ccl}} (z,t)\), which can then be substituted into Eq. (34) to obtain the value of \(B_{1}\). Then, the values of \(A_{1}\), \(A_{2}\), and \(B_{2}\) can be obtained using Eqs. (3133).

Appendix 2

The general solution to the governing Eqs. (1) and (2) can be written as follows:

$$C_{\text{gm}} (z) = E_{1} z + E_{2}$$
(57)
$$C_{\text{gcl}} (z) = F_{1} z + F_{2}$$
(58)

where \(E_{1}\) to \(F_{2}\) are the parameters to be determined by substituting the above equations into Eqs. (6) to (9) as follows:

$$E_{1} = \frac{{n_{\text{gcl}} D_{\text{gcl}} F_{1} }}{{D_{\text{gm}} }}$$
(59)
$$E_{2} = K_{{d{\text{gm}}}} C_{0} - \frac{{n_{\text{gcl}} D_{\text{gcl}} F_{1} (L_{\text{ccl}} + L_{\text{gcl}} + L_{\text{gm}} )}}{{D_{\text{gm}} }}$$
(60)
$$F_{ 2} = \frac{{K_{{d{\text{gm}}}} C_{0} }}{{K_{{d{\text{gcl}}}} }} - \frac{{n_{\text{gcl}} D_{\text{gcl}} L_{\text{gm}} F_{1} }}{{K_{{d{\text{gcl}}}} D_{\text{gm}} }} - F_{1} (L_{\text{ccl}} + L_{\text{gcl}} )$$
(61)
$$F_{1} = \frac{1}{\eta }\left. {\frac{{\partial C_{\text{ccl}} (z,t)}}{\partial z}} \right|_{{z = L_{\text{ccl}} }}$$
(62)

Assume that \(C_{\text{ccl}} (z,t)\) is determined by the following equation:

$$C_{\text{ccl}} (z,t) = u_{\text{ccl}} (z,t)\exp ( - \lambda t)$$
(63)

Substituting Eq. (63) into Eq. (3), Eq. (3) can then be expressed as follows:

$$a^{2} \frac{{\partial^{2} u_{\text{ccl}} (z,t)}}{{\partial z^{2} }} = \frac{{\partial u_{\text{ccl}} (z,t)}}{\partial t}$$
(64)

The initial condition of Eq. (64) can be expressed as follows:

$$\left. {u_{\text{ccl}} (z,t)} \right|_{t = 0} = 0$$
(65)

The bottom and top boundary conditions of Eq. (64) can be expressed as follows:

$$\left. {\frac{{\partial u_{\text{ccl}} (z,t)}}{\partial z}} \right|_{z = - \infty } = 0$$
(66)
$$\left. {u_{\text{ccl}} (z,t)} \right|_{{z = L_{\text{ccl}} }} = (F_{1} L_{\text{ccl}} + F_{2} )\exp (\lambda t)$$
(67)

The Laplace transformation technique is used to obtain the solution to Eq. (64), and \(\overline{{u_{\text{ccl}} (z,s)}}\) is the Laplace transform of \(u_{\text{ccl}} (z,t)\). Equation (64) can then be expressed as follows:

$$a^{2} \frac{{\partial^{2} \overline{{u_{\text{ccl}} (z,s)}} }}{{\partial z^{2} }} - s\overline{{u_{\text{ccl}} (z,s)}} = 0$$
(68)

The Laplace transforms of the boundary conditions considered can be written as follows:

$$\left. {\frac{{\partial \overline{{u_{\text{ccl}} (z,s)}} }}{\partial z}} \right|_{z = - \infty } = 0$$
(69)
$$\left. {\overline{{u_{\text{ccl}} (z,s)}} } \right|_{{z = L_{\text{ccl}} }} = (F_{1} L_{\text{ccl}} + F_{2} )\frac{1}{s - \lambda }$$
(70)

The solution to Eq. (68) can be expressed as follows:

$$\overline{{u_{\text{ccl}} (z,s)}} = \frac{{F_{1} L_{\text{ccl}} + F_{2} }}{s - \lambda }{ \exp }\left[ { - \frac{{(L_{\text{ccl}} - z)\sqrt s }}{a}} \right]$$
(71)

Multiplying the inverse Laplace transform of Eq. (71) by \(\exp ( - \lambda t)\) can obtain \(C_{\text{ccl}} (z,t)\), which can be expressed as follows:

$$\begin{aligned} C_{\text{ccl}} (z,t) = \frac{{F_{1} L_{\text{ccl}} + F_{2} }}{2}\left\{ {{ \exp }\left[ { - \frac{{(L_{\text{ccl}} - z)\sqrt \lambda }}{a}} \right]{\text{erfc}}\left[ {\frac{{L_{\text{ccl}} - z}}{2a\sqrt t } - \sqrt {\lambda t} } \right] + } \right. \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\left. {{ \exp }\left[ {\frac{{(L_{\text{ccl}} - z)\sqrt \lambda }}{a}} \right]{\text{erfc}}\left[ {\frac{{L_{\text{ccl}} - z}}{2a\sqrt t } + \sqrt {\lambda t} } \right]} \right\} \hfill \\ \end{aligned}$$
(72)

Substituting Eq. (72) into Eq. (62) and uniting Eqs. (5961), we can then obtain the values of \(E_{1}\) to \(F_{2}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, H., Qiu, J., Zhang, R. et al. Analytical solutions for organic contaminant diffusion in triple-layer composite liner system considering the effect of degradation. Acta Geotech. 15, 907–921 (2020). https://doi.org/10.1007/s11440-019-00783-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-019-00783-0

Keywords

Navigation