Skip to main content
Log in

Analytical solutions for diffusion of organic contaminant through GCL triple-layer composite liner considering degradation in liner

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Analytical solutions are presented for analyzing diffusion of organic contaminant through a triple-layer composite liner consisting of a geomembrane, a geosynthetic clay liner (GCL) and an attenuation liner (AL). The degradation of organic contaminant in the GCL and AL is considered. Steady-state and full analytical solutions are obtained for two scenarios with zero-concentration or zero-mass-flux boundary conditions at the base of the triple-layer composite liner. The validity and accuracy of the solutions are verified by comparing with an existing analytical solution and a numerical method. Results show that the AL yields major effect to the barrier efficiency of triple-layer composite liner. The contaminant half-life in the GCL has little influence on the mass flux and concentration at the base of triple-layer composite liner. The mass flux and concentration at the base of the triple-layer composite liner decrease with the decrease in contaminant half-life in AL. The steady-state times of bottom mass flux and concentration decrease with the decrease in the contaminant half-life in AL. The mass flux at the base of the triple-layer composite liner decreases with the increase in the thickness or sorption capacity of AL. The steady-state time of bottom mass flux decreases with the decrease in the thickness or sorption capacity of AL. The equivalence between GCL triple-layer composite liner and standard CCL composite liner considering degradation of contaminant is investigated based on the steady-state and full solutions. The analytical solutions can be used for preliminary design of landfill composite liners, verification of complicated numerical methods and evaluation of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C 0 :

Concentration of contaminant in leachate (g/m3)

t :

Time dimension (s)

C m :

Concentration of contaminant in GM with respect to the bulk volume (g/m3)

D m :

Diffusion coefficient in GM (m2/s)

C g :

Concentration of contaminant in the liquid phase of GCL (g/m3)

D *g :

Effective diffusion coefficient in GCL (m2/s)

R dg :

Retardation factor of GCL

ρ g :

Density of GCL (g/cm3)

K dg :

Distribution coefficient of GCL (mL/g)

n g :

Porosity of GCL

λ g :

Degradation rate coefficient in GCL (year−1)

t g1/2 :

Half-life in GCL (year)

C a :

Concentration of contaminant in the liquid phase of AL (g/m3)

D *a :

Effective diffusion coefficient in AL (m2/s)

R da :

Retardation factor of AL

ρ a :

Density of AL (g/cm3)

k da :

Distribution coefficient of AL (mL/g)

n a :

Porosity of AL

λ a :

Degradation rate coefficient in AL (year−1)

t a1/2 :

Half-life in AL (year)

S lm :

Partition coefficient between leachate and GM

S mg :

Partition coefficient between GM and GCL

L m :

Thickness of GM (m)

L g :

Thickness of GCL (m)

L a :

Thickness of AL (m)

L :

Total thickness of GCL and AL (m)

C ms :

Steady-state concentration of contaminant in GM with respect to the bulk volume (g/m3)

C gs :

Steady-state concentration of contaminant in the liquid phase of GCL (g/m3)

C as :

Stady-state concentration of contaminant in the liquid phase of AL (g/m3)

J :

Mass flux of triple-layer composite liner (mg/ha/year)

J s :

Steady-state mass flux of triple-layer composite liner (mg/ha/year)

t sj :

Steady-state time of bottom mass flux

t sc :

Steady-state time of bottom concentration

J Cs :

Steady-state mass flux of CCL composite liner (mg/ha/year)

S mc :

Contaminant partition coefficient between the lower surface of GM and CCL

D *c :

Effective diffusion coefficient in CCL (m2/s)

R dc :

Retardation factor of CCL

ρ c :

Density of CCL (g/cm3)

K dc :

Distribution coefficient of CCL (mL/g)

n c :

Porosity of CCL

λ c :

Degradation rate coefficient in CCL (year−1)

t c1/2 :

Half-life in CCL (year)

L c :

Thickness of CCL (m)

References

  • Chen YM, Xie HJ, Ke H, Chen RP (2009) An analytical solution for one-dimensional contaminant diffusion through multi-layered system and its applications. Environ Geol 58:1083–1094

    Article  Google Scholar 

  • Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen H, Heron G (2001) Biochemistry of landfill leachate plumes. Appl Geochem 16(7–8):659–718

    Article  Google Scholar 

  • Cleall PJ, Li YC (2011) Analytical solution for diffusion of VOCs through composite landfill Liners. J Geotech Geoenviron Eng 137:850–854

    Article  Google Scholar 

  • Dickinson S, Brachman RWI (2008) Assessment of alternative protection layers for a geomembrane-geosynthetic clay liner (GM–GCL) composite liner. Can Geotech J 45(11):1594–1610

    Article  Google Scholar 

  • Du YJ, Shen SL, Liu SY, Hayashi S (2009) Contaminant mitigating performance of Chinese standard municipal solid waste landfill liner systems. Geotext Geomembr 27(3):232–239

    Article  Google Scholar 

  • Edil TB (2003) A review of aqueous-phase VOC transport in modern landfill liners. Waste Manag 23(7):561–571

    Article  Google Scholar 

  • El-Zein A (2008) A general approach to the modeling of contaminant transport through composite liners with intact or leak geomembranes. Int J Numer Anal Methods Geomech 32(3):265–287

    Article  Google Scholar 

  • Foose GJ (2002) Transit-time design for diffusion through composite liners. J Geotech Geoenviron Eng 128(7):590–601

    Article  Google Scholar 

  • Foose GJ (2010) A steady-state approach for evaluating the impact of solute transport through composite liners on groundwater quality. Waste Manag 30(8–9):1577–1586

    Article  Google Scholar 

  • Foose GJ, Benson CH, Edil TB (2002) Comparison of solute transport in three composite liners. J Geotech Geoenviron Eng 128(5):391–403

    Article  Google Scholar 

  • Guan C, Xie HJ, Wang YZ, Chen YM, Jiang YS, Tang XW (2014) An analytical model for solute transport through a GCL-based two-layered liner considering biodegradation. Sci Total Environ 466–467:221–231

    Article  Google Scholar 

  • Lake CB, Rowe RK (2004) Volatile organic compound diffusion and sorption coefficients for a needle-punched GCL. Geosynth Int 11(4):257–272

    Article  Google Scholar 

  • Lee PKK, Xie KH, Cheung YK (1992) A study on one-dimensional consolidation of layered systems. Int J Numer Anal Methods Geomech 16(11):815–831

    Article  Google Scholar 

  • Li YC, Cleall PJ (2010) Analytical solutions for contaminant diffusion in double-layered porous media. J Geotech Geoenviron Eng 136(11):1542–1554

    Article  Google Scholar 

  • MCC (Ministry of Construction of China) (2007) Technical code for liner system of municipal solid waste landfill (CJJ 113–2007). China Building Press, Beijing (in Chinese)

    Google Scholar 

  • Mitchell JK, Santamarina JC (2005) Biological consideration in geotechnical engineering. J Geotech Geoenviron Eng 131(10):1222–1233

    Article  Google Scholar 

  • Qian XD, Koerner RM, Gray D (2002) Geotechnical aspects of landfill design and construction. Prentice Hall Publishers, New Jersey

    Google Scholar 

  • Rowe RK (2005) Long-term performance of contaminant barrier systems. Geotechnique 55(9):631–678

    Article  Google Scholar 

  • Rowe RK (2011) Systems engineering: the design and operation of municipal solid waste landfills to minimize contaminant of groundwater. Geosynth Int 18(6):391–404

    Article  Google Scholar 

  • Rowe RK, Booker JR (2005) POLLUTEv7: Pollutant Migration Through Nonhomogeneous Soil, 1983–2005. Distributed by GAEA Environmental Engineering Ltd, 87 Garden Street, Whitby, Ontario, Canada LIN 9E7

  • Rowe RK, Brachman RW (2004) Assessment of equivalence of composite liners. Geosynth Int 11(4):273–286

    Article  Google Scholar 

  • Sangam HP, Rowe RK (2005) Effect of surface fluorination on diffusion through a high density polyethylene geomembrane. J Geotech Geoenviron Eng 131(6):694–704

    Article  Google Scholar 

  • Tojo Y, Sato M, Matsuo T, Matsuto T (2011) Monitoring of leachate quality stored in gas ventilation pipes for evaluating the degree of landfill stabilization. Waste Manag Res 129(1):41–49

    Article  Google Scholar 

  • Varank G, Demir A, Top S, Sekman E, Akkaya E, Yetilmezsoy K et al (2011) Migration behavior of landfill leachate contaminants through alternative composite liners. Sci Total Environ 409(7):3183–3196

    Article  Google Scholar 

  • Williams GP, Tomasko D (2008) Analytical solution to the advective-dispersive equation with a decaying source and contaminant. J Hydrol Eng 13(12):1193–1196

    Article  Google Scholar 

  • Xie HJ, Chen YM, Ke H, Tang XW, Chen RP (2009) Analysis of diffusion-adsorption equivalency of landfill liner systems for organic contaminants. J Environ Sci 21:552–560

    Article  Google Scholar 

  • Xie HJ, Lou ZH, Chen YM, Jin AM, Zhan TLT, Tang XW (2013) An analytical solution to organic contaminant diffusion through composite liners considering the effect of degradation. Geotext Geomembr 36:10–18

    Article  Google Scholar 

  • Xie HJ, Jiang YS, Zhang CH, Feng SJ (2014) An analytical model for volatile organic compound transport through a composite liner consisting of a geomembrane, a GCL, and a soil liner. Environ Sci Pollut Res. doi:10.1007/s11356-014-3565-5

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support provided by Key Program of National Natural Science Foundation of China (No. 41530637), General Program of National Natural Science Foundation of China (No. 41372268) and Graduate Student Innovative Project of Jiangsu Province (No. KYLX-0438). The authors also appreciate the efforts of anonymous reviewers who provided constructive suggestions for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Wu.

Appendices

Appendix 1: zero-concentration boundary condition

The solution for the governing equation Eq. (2) can be expressed as

$$C_{\text{m}} \left( {z,t} \right) = A_{1} \left( t \right) + A_{2} \left( t \right)z$$
(94)

where A 1(t) and A 2(t) are parameters to be determined. Substituting Eqs. (94) into (1), (3) and (4) results in

$$A_{1} \left( t \right) - A_{2} \left( t \right)L_{\text{m}} = S_{\text{lm}} C_{ 0}$$
(95)
$$A_{1} \left( t \right) = C_{\text{g}} \left( {0,t} \right)S_{\text{mg}}$$
(96)
$$A_{2} \left( t \right) = \frac{{n_{\text{g}} D_{\text{g}}^{*} }}{{D_{\text{m}} }}\left. {\frac{{\partial C_{\text{g}} (z,t)}}{\partial z}} \right|_{z = 0}$$
(97)

Substituting Eqs. (96) and (97) into (95) results in

$$C_{\text{g}} \left( {0,t} \right)S_{\text{mg}} - \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} }}{{D_{\text{m}} }}\left. {\frac{{\partial C_{\text{g}} (z,t)}}{\partial z}} \right|_{z = 0} = S_{\text{lm}} C_{ 0}$$
(98)

Because of the linear nature of Eqs. (98) and (5)–(16), the C g(z, t) and C a(z, t) can be solved by the superposition method (Lee et al. 1992; Chen et al. 2009). The solutions to C g(z, t) and C a(z, t) are expressed as follows:

$$C_{\text{g}} (z,t) = u_{\text{g}} (z) + v_{\text{g}} (z,t)$$
(99)
$$C_{\text{a}} (z,t) = u_{\text{a}} (z) + v_{\text{a}} (z,t)$$
(100)

Substitution of Eqs. (99) and (100) into (98) and (5)–(16) yields

$$\frac{{\partial v_{\text{g}} \left( {z,t} \right)}}{\partial t} = \frac{{D_{\text{g}}^{*} }}{{R_{\text{dg}} }}\frac{{\partial^{2} v_{\text{g}} \left( {z,t} \right)}}{{\partial z^{2} }} - \lambda_{\text{g}} v_{\text{g}} \left( {z,t} \right) + \frac{{D_{\text{g}}^{*} }}{{R_{\text{dg}} }}\frac{{{\text{d}}^{2} u_{\text{g}} \left( z \right)}}{{{\text{d}}z^{2} }} - \lambda_{\text{g}} u_{\text{g}} \left( z \right)$$
(101)
$$\frac{{\partial v_{\text{a}} \left( {z,t} \right)}}{\partial t} = \frac{{D_{\text{a}}^{*} }}{{R_{\text{da}} }}\frac{{\partial^{2} v_{\text{a}} \left( {z,t} \right)}}{{\partial z^{2} }} - \lambda_{\text{a}} v_{\text{a}} \left( {z,t} \right) + \frac{{D_{\text{a}}^{*} }}{{R_{\text{da}} }}\frac{{{\text{d}}^{2} u_{\text{a}} \left( z \right)}}{{{\text{d}}z^{2} }} - \lambda_{\text{a}} u_{\text{a}} \left( z \right)$$
(102)
$$v_{\text{g}} \left( {0,t} \right)S_{\text{mg}} - \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} }}{{D_{\text{m}} }}\left. {\frac{{\partial v_{\text{g}} (z,t)}}{\partial z}} \right|_{z = 0} = S_{\text{lm}} C_{ 0} - u_{\text{g}} \left( 0 \right)S_{\text{mg}} + \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} }}{{D_{\text{m}} }}\left. {\frac{{{\text{d}}u_{\text{g}} \left( z \right)}}{{\text{d}}z}} \right|_{z = 0}$$
(103)
$$n_{\text{g}} D_{\text{g}}^{*} \left. {\frac{{\partial v_{\text{g}} (z,t)}}{\partial z}} \right|_{{z = L_{\text{g}} }} +\, n_{\text{g}} D_{\text{g}}^{*} \left. {\frac{{{\text{d}}u_{\text{g}} \left( z \right)}}{{\text{d}}z}} \right|_{{z = L_{\text{g}} }} = n_{\text{a}} D_{\text{a}}^{*} \left. {\frac{{\partial v_{\text{a}} (z,t)}}{\partial z}} \right|_{{z = L_{\text{g}} }} +\, n_{\text{a}} D_{\text{a}}^{*} \left. {\frac{{{\text{d}}u_{\text{a}} \left( z \right)}}{{\text{d}}z}} \right|_{{z = L_{\text{g}} }}$$
(104)
$$v_{\text{g}} \left( {L_{\text{g}} ,t} \right) + u_{\text{g}} \left( {L_{\text{g}} } \right) = v_{\text{a}} \left( {L_{\text{g}} ,t} \right) + u_{\text{a}} \left( {L_{\text{g}} } \right)$$
(105)
$$v_{\text{a}} \left( {L,t} \right) + u_{\text{a}} \left( L \right) = 0$$
(106)
$$v_{\text{g}} \left( {z,0} \right) + u_{\text{g}} \left( z \right) = 0$$
(107)
$$v_{\text{a}} \left( {z,0} \right) + u_{\text{a}} \left( z \right) = 0$$
(108)

In order that the governing equations and boundary conditions of v g(z, t) and v a(z, t) become homogeneous, u g(z) and u a(z) are set to satisfy

$$\frac{{D_{\text{g}}^{*} }}{{R_{\text{dg}} }}\frac{{{\text{d}}^{2} u_{\text{g}} \left( z \right)}}{{{\text{d}}z^{2} }} - \lambda_{\text{g}} u_{\text{g}} \left( z \right) = 0$$
(109)
$$\frac{{D_{\text{a}}^{*} }}{{R_{\text{da}} }}\frac{{{\text{d}}^{2} u_{\text{a}} \left( z \right)}}{{{\text{d}}z^{2} }} - \lambda_{\text{a}} u_{\text{a}} \left( z \right) = 0$$
(110)
$$u_{\text{g}} \left( 0 \right)S_{\text{mg}} - \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} }}{{D_{\text{m}} }}\left. {\frac{{{\text{d}}u_{\text{g}} \left( z \right)}}{{\text{d}}z}} \right|_{z = 0} = S_{\text{lm}} C_{ 0}$$
(111)
$$n_{\text{g}} D_{\text{g}}^{*} \left. {\frac{{{\text{d}}u_{\text{g}} \left( z \right)}}{{\text{d}}z}} \right|_{{z = L_{\text{g}} }} = n_{\text{a}} D_{\text{a}}^{*} \left. {\frac{{{\text{d}}u_{\text{a}} \left( z \right)}}{{\text{d}}z}} \right|_{{z = L_{\text{g}} }}$$
(112)
$$u_{\text{g}} \left( {L_{\text{g}} } \right) = u_{\text{a}} \left( {L_{\text{g}} } \right)$$
(113)
$$u_{\text{a}} \left( L \right) = 0$$
(114)

u g(z) and u a(z) are obtained as

$$u_{\text{g}} \left( z \right) = \frac{{C_{0} S_{\text{lm}} D_{\text{m}} }}{E}\left\{ {n_{\text{g}} D_{\text{g}}^{*} \varepsilon_{\text{g}} \sinh \left( {\varepsilon_{\text{a}} L_{\text{a}} } \right)\cosh \left[ {\varepsilon_{\text{g}} \left( {L_{\text{g}} - z} \right)} \right] + \, n_{\text{a}} D_{\text{a}}^{*} \varepsilon_{\text{a}} \cosh \left( {\varepsilon_{\text{a}} L_{\text{a}} } \right)\sinh \left[ {\varepsilon_{\text{g}} \left( {L_{\text{g}} - z} \right)} \right]} \right\}$$
(115)
$$u_{\text{a}} \left( z \right) = \frac{1}{E}C_{0} S_{\text{lm}} D_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \varepsilon_{\text{g}} \sinh \left[ {\varepsilon_{\text{a}} \left( {L - z} \right)} \right]$$
(116)

where

$$\varepsilon_{\text{g}} = \sqrt {\frac{{R_{\text{dg}} \lambda_{\text{g}} }}{{D_{\text{g}}^{*} }}}$$
(117)
$$\varepsilon_{\text{a}} = \sqrt {\frac{{R_{\text{da}} \lambda_{\text{a}} }}{{D_{\text{a}}^{*} }}}$$
(118)
$$\begin{aligned} E = n_{\text{g}} D_{\text{g}}^{*} \varepsilon_{\text{g}} \sinh \left( {\varepsilon_{\text{a}} L_{\text{a}} } \right)\left[ {S_{\text{mg}} D_{\text{m}} \cosh \left( {\varepsilon_{\text{g}} L_{\text{g}} } \right) + n_{\text{g}} D_{\text{g}}^{*} L_{\text{m}} \varepsilon_{\text{g}} \sinh \left( {\varepsilon_{\text{g}} L_{\text{g}} } \right)} \right] \\ \quad +\, n_{\text{a}} D_{\text{a}}^{*} \varepsilon_{\text{a}} \cosh \left( {\varepsilon_{\text{a}} L_{\text{a}} } \right)\left[ {S_{\text{mg}} D_{\text{m}} \sinh \left( {\varepsilon_{\text{g}} L_{\text{g}} } \right) + n_{\text{g}} D_{\text{g}}^{*} L_{\text{m}} \varepsilon_{\text{g}} \cosh \left( {\varepsilon_{\text{g}} L_{\text{g}} } \right)} \right] \\ \end{aligned}$$
(119)

The governing equations, boundary conditions and initial conditions of v g(z, t) and v a(z, t) are as follows:

$$\frac{{\partial v_{\text{g}} \left( {z,t} \right)}}{\partial t} = \frac{{D_{\text{g}}^{*} }}{{R_{\text{dg}} }}\frac{{\partial^{2} v_{\text{g}} \left( {z,t} \right)}}{{\partial z^{2} }} - \lambda_{\text{g}} v_{\text{g}} \left( {z,t} \right)$$
(120)
$$\frac{{\partial v_{\text{a}} \left( {z,t} \right)}}{\partial t} = \frac{{D_{\text{a}}^{*} }}{{R_{\text{da}} }}\frac{{\partial^{2} v_{\text{a}} \left( {z,t} \right)}}{{\partial z^{2} }} - \lambda_{\text{a}} v_{\text{a}} \left( {z,t} \right)$$
(121)
$$v_{\text{g}} \left( {0,t} \right)S_{\text{mg}} - \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} }}{{D_{\text{m}} }}\left. {\frac{{\partial v_{\text{g}} (z,t)}}{\partial z}} \right|_{z = 0} = 0$$
(122)
$$n_{\text{g}} D_{\text{g}}^{*} \left. {\frac{{\partial v_{\text{g}} (z,t)}}{\partial z}} \right|_{{z = L_{\text{g}} }} = n_{\text{a}} D_{\text{a}}^{*} \left. {\frac{{\partial v_{\text{a}} (z,t)}}{\partial z}} \right|_{{z = L_{\text{g}} }}$$
(123)
$$v_{\text{g}} \left( {L_{\text{g}} ,t} \right) = v_{\text{a}} \left( {L_{\text{g}} ,t} \right)$$
(124)
$$v_{\text{a}} \left( {L,t} \right) = 0$$
(125)
$$v_{\text{g}} \left( {z,0} \right) = - u_{\text{g}} \left( z \right)$$
(126)
$$v_{\text{a}} \left( {z,0} \right) = - u_{\text{a}} \left( z \right)$$
(127)

The v g(z, t) and v a(z, t) can be solved by the method of separation of variables. The solutions to v g (z, t) and v a(z, t) are expressed as follows:

$$v_{\text{g}} (z,t) = Z_{\text{g}} (z)T_{\text{g}} (t)$$
(128)
$$v_{\text{a}} (z,t) = Z_{\text{a}} (z)T_{\text{a}} (t)$$
(129)

Substitution of Eqs. (128) and (129) into the governing equations, i.e., Eqs. (120) and (121), yields

$$\frac{{D_{\text{g}}^{*} }}{{R_{\text{dg}} }}\frac{{\frac{{{\text{d}}^{2} Z_{\text{g}} \left( z \right)}}{{{\text{d}}z^{2} }}}}{{Z_{\text{g}} \left( z \right)}} - \lambda_{\text{g}} = \frac{{\frac{{{\text{d}}T_{\text{g}} \left( t \right)}}{{{\text{d}}t}}}}{{T_{\text{g}} \left( t \right)}}$$
(130)
$$\frac{{D_{\text{a}}^{*} }}{{R_{\text{da}} }}\frac{{\frac{{{\text{d}}^{2} Z_{\text{a}} \left( z \right)}}{{{\text{d}}z^{2} }}}}{{Z_{\text{a}} \left( z \right)}} - \lambda_{\text{a}} = \frac{{\frac{{{\text{d}}T_{\text{a}} \left( t \right)}}{{{\text{d}}t}}}}{{T_{\text{a}} \left( t \right)}}$$
(131)

Based on Eqs. (123) and (124), the ratio of T g(t) and T a(t) must be constant. This constant can be adjusted to be 1 by an appropriate scaling of Z g(z) and Z a(z). Therefore, the following relation can be set as

$$T_{\text{g}} \left( t \right) = T_{\text{a}} \left( t \right)$$
(132)
$$\frac{{\frac{{{\text{d}}T_{\text{g}} \left( t \right)}}{{{\text{d}}t}}}}{{T_{\text{g}} \left( t \right)}} = \frac{{\frac{{{\text{d}}T_{\text{a}} \left( t \right)}}{{{\text{d}}t}}}}{{T_{\text{a}} \left( t \right)}} = - \delta$$
(133)

T g(t) and T a(t) are obtained as

$$T_{\text{g}} \left( t \right) = T_{\text{a}} \left( t \right) = e^{ - \delta t}$$
(134)

Z g(z) and Z a(z) satisfy

$$\frac{{{\text{d}}^{2} Z_{\text{g}} \left( z \right)}}{{{\text{d}}z^{2} }} + \left( {\delta - \lambda_{\text{g}} } \right)\frac{{R_{\text{dg}} }}{{D_{\text{g}}^{*} }}Z_{\text{g}} \left( z \right) = 0$$
(135)
$$\frac{{{\text{d}}^{2} Z_{\text{a}} \left( z \right)}}{{{\text{d}}z^{2} }} + \left( {\delta - \lambda_{\text{a}} } \right)\frac{{R_{\text{da}} }}{{D_{\text{a}}^{*} }}Z_{\text{a}} \left( z \right) = 0$$
(136)
$$Z_{\text{g}} \left( 0 \right)S_{\text{mg}} - \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} }}{{D_{\text{m}} }}\left. {\frac{{{{\text{d}}Z}_{\text{g}} \left( z \right)}}{{\text{d}}z}} \right|_{z = 0} = 0$$
(137)
$$n_{\text{g}} D_{\text{g}}^{*} \left. {\frac{{{{\text{d}}Z}_{\text{g}} \left( z \right)}}{{\text{d}}z}} \right|_{{z = L_{\text{g}} }} = n_{\text{a}} D_{\text{a}}^{*} \left. {\frac{{{{\text{d}}Z}_{\text{a}} \left( z \right)}}{{\text{d}}z}} \right|_{{z = L_{\text{g}} }}$$
(138)
$$Z_{\text{g}} \left( {L_{\text{g}} } \right) = Z_{\text{a}} \left( {L_{\text{g}} } \right)$$
(139)
$$Z_{\text{a}} \left( L \right) = 0$$
(140)

With the definitions

$$\omega_{\text{g}} = \sqrt {\frac{{R_{\text{dg}} }}{{D_{\text{g}}^{*} }}\left| {\lambda_{\text{g}} - \delta } \right|} \quad {\text{and}}\quad \omega_{\text{a}} = \sqrt {\frac{{R_{\text{da}} }}{{D_{\text{a}}^{*} }}\left| {\lambda_{\text{a}} - \delta } \right|}$$
(141)

the solutions of the differential Eqs. (135) and (136) which obey the boundary condition Eq. (140) are

$$Z_{\text{g}} \left( z \right) = \left\{ {\begin{array}{*{20}c} {a_{{\text{g}}1} \sinh \left( {\omega_{\text{g}} z} \right) + a_{{\text{g}}2} \cosh \left( {\omega_{\text{g}} z} \right) \, \delta < \lambda_{\text{g}} } \\ {a_{{\text{g}}1} z + a_{{\text{g}}2} \, \delta = \lambda_{\text{g}} } \\ {a_{{\text{g}}1} \sin \left( {\omega_{\text{g}} z} \right) + a_{{\text{g}}2} \cos \left( {\omega_{\text{g}} z} \right) \, \delta > \lambda_{\text{g}} } \\ \end{array} } \right.$$
(142)
$$Z_{\text{a}} \left( z \right) = \left\{ {\begin{array}{*{20}c} {a_{\text{a}} \sinh \left[ {\omega_{\text{a}} \left( {L - z} \right)} \right] \, \delta < \lambda_{\text{a}} } \\ {a_{\text{a}} \left( {L - z} \right) \, \delta = \lambda_{\text{a}} } \\ {a_{\text{a}} \sin \left[ {\omega_{\text{a}} \left( {L - z} \right)} \right] \, \delta > \lambda_{\text{a}} } \\ \end{array} } \right.$$
(143)

Substitution of Eqs. (142) and (143) into boundary conditions Eqs. (137)–(139) for any combination δ < λ g, δ = λ g, or δ > λ g and δ < λ a, δ = λ a, or δ > λ a yields a set of three homogeneous equations for the three unknowns a g1, a g2 and a a:

$${\mathbf{M}} \cdot \left( {\begin{array}{*{20}c} {a_{{\text{g}}1} } \\ {a_{{\text{g}}2} } \\ {a_{\text{a}} } \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \right)$$
(144)

with M being a 3 × 3 matrix which depends on the characteristic parameters of the barrier system and on δ. Non-trivial solutions of this set of homogeneous equations, i.e., a solution Z g(z) > 0 and Z a(z) > 0, only exist if the determinant of the matrix M is zero. Since δ is the only parameter in M which is not yet determined, the equation det M = 0 is the equation which determines the values of δ for which a non-trivial solution of the Eqs. (135)–(139) exists. The equation det M = 0 is the eigenvalue equation for δ.

The direct evaluation of det M for the nine possible combinations δ < λ g, δ = λ g, or δ > λ g and δ < λ a, δ = λ a, or δ > λ a shows that det M is strictly positive for any value of δ except for the following three combinations λ a < δ < λ g, λ g < δ < λ a and λ g, λ a < δ. Therefore, non-trivial solutions can only exist for these three combinations.

The equation det M = 0 for the combination λ a < δ < λ g is

$$\begin{aligned} \det \, {\mathbf{M}} &= n_{\text{a}} D_{\text{a}}^{*} \omega_{\text{a}} \cos \left( {\omega_{\text{a}} L_{\text{a}} } \right)\left[ {\sinh \left( {\omega_{\text{g}} L_{\text{g}} } \right) + \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \omega_{\text{g}} }}{{D_{\text{m}} S_{\text{mg}} }}\cosh \left( {\omega_{\text{g}} L_{\text{g}} } \right)} \right] \hfill \\ &\quad + \, n_{\text{g}} D_{\text{g}}^{*} \omega_{\text{g}} \sin \left( {\omega_{\text{a}} L_{\text{a}} } \right)\left[ {\cosh \left( {\omega_{\text{g}} L_{\text{g}} } \right) + \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \omega_{\text{g}} }}{{D_{\text{m}} S_{\text{mg}} }}\sinh \left( {\omega_{\text{g}} L_{\text{g}} } \right)} \right] = 0 \hfill \\ \end{aligned}$$
(145)

Let the eigenvalues be denoted by δ k and the corresponding eigenfunctions by Z gk (z) and Z ak (z). The parameters ω gk and ω ak are defined as

$$\omega_{{\text{g}}k} = \sqrt {\frac{{R_{\text{dg}} }}{{D_{\text{g}}^{*} }}\left| {\lambda_{\text{g}} - \delta_{k} } \right|} \quad {\text{and}}\quad \omega_{{\text{a}}k} = \sqrt {\frac{{R_{\text{da}} }}{{D_{\text{a}}^{*} }}\left| {\lambda_{\text{a}} - \delta_{k} } \right|}$$
(146)

Equation (145) may or may not have a solution in the interval (λ a, λ g). If a solution δ k exists, the corresponding eigenfunctions are (with the normalization a ak  = 1)

$$Z_{{\text{g}}k} \left( z \right) = a_{{\text{g}}1k} \sinh \left( {\omega_{{\text{g}}k} z} \right) + a_{{\text{g}}2k} \cosh \left( {\omega_{{\text{g}}k} z} \right)\quad {\text{if}}\qquad\quad \, \lambda_{\text{a}} < \delta_{k} < \lambda_{\text{g}}$$
(147)
$$Z_{{\text{a}}k} \left( z \right) = \sin \left[ {\omega_{{\text{a}}k} \left( {L - z} \right)} \right]\quad {\text{if}}\quad \lambda_{\text{a}} < \delta_{k} < \lambda_{\text{g}}$$
(148)

with

$$a_{{\text{g}}1k} = D_{\text{m}} S_{\text{mg}} \sin \left( {\omega_{{\text{a}}k} L_{\text{a}} } \right)/\left[ {D_{\text{m}} S_{\text{mg}} \sinh \left( {\omega_{{\text{g}}k} L_{\text{g}} } \right) + \, L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \omega_{{\text{g}}k} \cosh \left( {\omega_{{\text{g}}k} L_{\text{g}} } \right)} \right]$$
(149)
$$a_{{\text{g}}2k} = a_{{\text{g}}1k} \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \omega_{{\text{g}}k} }}{{D_{\text{m}} S_{\text{mg}} }}$$
(150)

The equation det M = 0 for the combination λ g, λ a < δ is

$$\begin{aligned} \det \, {\mathbf{M}} = n_{\text{a}} D_{\text{a}}^{*} \omega_{\text{a}} \cos \left( {\omega_{\text{a}} L_{\text{a}} } \right)\left[ {\sin \left( {\omega_{\text{g}} L_{\text{g}} } \right) + \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \omega_{\text{g}} }}{{D_{\text{m}} S_{\text{mg}} }}\cos \left( {\omega_{\text{g}} L_{\text{g}} } \right)} \right] \hfill \\ + \, n_{\text{g}} D_{\text{g}}^{*} \omega_{\text{g}} \sin \left( {\omega_{\text{a}} L_{\text{a}} } \right)\left[ {\cos \left( {\omega_{\text{g}} L_{\text{g}} } \right) - \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \omega_{\text{g}} }}{{D_{\text{m}} S_{\text{mg}} }}\sin \left( {\omega_{\text{g}} L_{\text{g}} } \right)} \right] = 0 \hfill \\ \end{aligned}$$
(151)

Since the interval of the possible solutions is not bounded from above, this equation always has solutions. With the same definition of δ k , Z gk (z) and Z ak (z) as above and the same normalization a ak  = 1, the eigenfunctions are

$$Z_{{\text{g}}k} \left( z \right) = a_{{\text{g}}1k} \sin \left( {\omega_{{\text{g}}k} z} \right) + a_{{\text{g}}2k} \cos \left( {\omega_{{\text{g}}k} z} \right)\quad {\text{if}}\quad \, \lambda_{\text{a}} ,\lambda_{\text{g}} < \delta_{k}$$
(152)
$$Z_{{\text{a}}k} \left( z \right) = \sin \left[ {\omega_{{\text{a}}k} \left( {L - z} \right)} \right]\quad {\text{if}}\quad \lambda_{\text{a}} ,\lambda_{\text{g}} < \delta_{k}$$
(153)

with

$$a_{{\text{g}}1k} = D_{\text{m}} S_{\text{mg}} \sin \left( {\omega_{{\text{a}}k} L_{\text{a}} } \right)/\left[ {D_{\text{m}} S_{\text{mg}} \sin \left( {\omega_{{\text{g}}k} L_{\text{g}} } \right) +\, L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \omega_{{\text{g}}k} \cos \left( {\omega_{{\text{g}}k} L_{\text{g}} } \right)} \right]$$
(154)
$$a_{{\text{g}}2k} = a_{{\text{g}}1k} \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \omega_{{\text{g}}k} }}{{D_{\text{m}} S_{\text{mg}} }}$$
(155)

The equation det M = 0 for the combination λ g < δ < λ a is

$$\begin{aligned} \det \, {\mathbf{M}} = n_{\text{a}} D_{\text{a}}^{*} \omega_{\text{a}} \cosh \left( {\omega_{\text{a}} L_{\text{a}} } \right)\left[ {\sin \left( {\omega_{\text{g}} L_{\text{g}} } \right) + \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \omega_{\text{g}} }}{{D_{\text{m}} S_{\text{mg}} }}\cos \left( {\omega_{\text{g}} L_{\text{g}} } \right)} \right] \hfill \\ + \, n_{\text{g}} D_{\text{g}}^{*} \omega_{\text{g}} \sinh \left( {\omega_{\text{a}} L_{\text{a}} } \right)\left[ {\cos \left( {\omega_{\text{g}} L_{\text{g}} } \right) - \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \omega_{\text{g}} }}{{D_{\text{m}} S_{\text{mg}} }}\sin \left( {\omega_{\text{g}} L_{\text{g}} } \right)} \right] = 0 \hfill \\ \end{aligned}$$
(156)

Equation (156) may or may not have a solution in the interval (λ g, λ a). If a solution exists, with the same definition of δ k , Z gk (z) and Z ak (z) as above and the same normalization a ak  = 1 the eigenfunctions are

$$Z_{{\text{g}}k} \left( z \right) = a_{{\text{g}}1k} \sin \left( {\omega_{{\text{g}}k} z} \right) + a_{{\text{g}}2k} \cos \left( {\omega_{{\text{g}}k} z} \right)\quad {\text{if}}\quad \lambda_{\text{g}} < \delta_{k} < \lambda_{\text{a}}$$
(157)
$$Z_{{\text{a}}k} \left( z \right) = \sin \left[ {\omega_{{\text{a}}k} \left( {L - z} \right)} \right]\quad {\text{if}}\quad \lambda_{\text{g}} < \delta_{k} < \lambda_{\text{a}}$$
(158)

with

$$a_{{\text{g}}1k} = D_{\text{m}} S_{\text{mg}} \sinh \left( {\omega_{{\text{a}}k} L_{\text{a}} } \right)/\left[ {D_{\text{m}} S_{\text{mg}} \sin \left( {\omega_{{\text{g}}k} L_{\text{g}} } \right) +\, L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \omega_{{\text{g}}k} \cos \left( {\omega_{{\text{g}}k} L_{\text{g}} } \right)} \right]$$
(159)
$$a_{{\text{g}}2k} = a_{{\text{g}}1k} \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \omega_{{\text{g}}k} }}{{D_{\text{m}} S_{\text{mg}} }}$$
(160)

For each case λ g < λ a, λ g = λ a and λ g > λ a, the solutions of the Eqs. (120)–(127) are

$$v_{\text{g}} \left( {z,t} \right) = \sum\limits_{k = 1}^{\infty } {G_{k} Z_{{\text{g}}k} \left( z \right)} e^{{ - \delta_{k} t}}$$
(161)
$$v_{\text{a}} \left( {z,t} \right) = \sum\limits_{k = 1}^{\infty } {G_{k} Z_{{\text{a}}k} \left( z \right)} e^{{ - \delta_{k} t}}$$
(162)

with δ k , Z gk (z) and Z ak (z) according to Eqs. (145)–(150), (151)–(155) or (156)–(160) depending on the relative size of δ k , λ a and λ g.

The orthogonality of Z gk (z) (0 < z < L g) and Z ak (z) (L g < z < L) can be shown by considering

$$\begin{aligned} \left( {\delta_{k} - \delta_{\text{m}} } \right)\left[ {n_{\text{g}} R_{\text{dg}} \int_{0}^{{L_{\text{g}} }} {Z_{{\text{g}}k} \left( z \right)Z_{\text{gm}} \left( z \right)} {\text{d}}z + n_{\text{a}} R_{\text{da}} \int_{{L_{\text{g}} }}^{L} {Z_{{\text{a}}k} \left( z \right)Z_{\text{am}} \left( z \right)} {\text{d}}z} \right] \hfill \\ = - n_{\text{g}} R_{\text{dg}} \int_{0}^{{L_{\text{g}} }} {\left( {\frac{{D_{\text{g}}^{*} }}{{R_{\text{dg}} }}\frac{{{\text{d}}^{2} Z_{{\text{g}}k} \left( z \right)}}{{{\text{d}}z^{2} }} - \lambda_{\text{g}} Z_{{\text{g}}k} \left( z \right)} \right)Z_{\text{gm}} \left( z \right)} {\text{d}}z + n_{\text{g}} R_{\text{dg}} \int_{0}^{{L_{\text{g}} }} {Z_{{\text{g}}k} \left( z \right)\left( {\frac{{D_{\text{g}}^{*} }}{{R_{\text{dg}} }}\frac{{{\text{d}}^{2} Z_{\text{gm}} \left( z \right)}}{{{\text{d}}z^{2} }} - \lambda_{\text{g}} Z_{\text{gm}} \left( z \right)} \right)} {\text{d}}z \hfill \\ \quad - n_{\text{a}} R_{\text{da}} \int_{{L_{\text{g}} }}^{L} {\left( {\frac{{D_{\text{a}}^{*} }}{{R_{\text{da}} }}\frac{{{\text{d}}^{2} Z_{{\text{a}}k} \left( z \right)}}{{{\text{d}}z^{2} }} - \lambda_{\text{a}} Z_{{\text{a}}k} \left( z \right)} \right)Z_{\text{am}} \left( z \right)} {\text{d}}z + n_{\text{a}} R_{\text{da}} \int_{{L_{\text{g}} }}^{L} {Z_{{\text{a}}k} \left( z \right)\left( {\frac{{D_{\text{a}}^{*} }}{{R_{\text{da}} }}\frac{{{\text{d}}^{2} Z_{\text{am}} \left( z \right)}}{{{\text{d}}z^{2} }} - \lambda_{\text{a}} Z_{\text{am}} \left( z \right)} \right)} {\text{d}}z \hfill \\ \end{aligned}$$
(163)

If δ k  ≠ δ m(k ≠ m), the right-hand side of Eq. (163) is equal to the left-hand side due to Eqs. (135) and (136). With partial integration of the right-hand side and application of the boundary conditions, Eqs. (137)–(140) follow that the right-hand side is zero. Since δ k  ≠ δ m, the squared bracket on the left-hand side must be zero.

Using the orthogonality of Z gk (z) (0 < z < L g) and Z ak (z) (L g < z < L), the following formulation for G k can be obtained as

$$G_{k} = \frac{1}{{H_{k} }}\left[ {n_{\text{g}} R_{\text{dg}} \int_{0}^{{L_{\text{g}} }} { - u_{\text{g}} \left( z \right)Z_{{\text{g}}k} \left( z \right)} {\text{d}}z + n_{\text{a}} R_{\text{da}} \int_{{L_{\text{g}} }}^{L} { - u_{\text{a}} \left( z \right)Z_{{\text{a}}k} \left( z \right)} {\text{d}}z} \right]$$
(164)

with

$$H_{k} = n_{\text{g}} R_{\text{dg}} \int_{0}^{{L_{\text{g}} }} {Z_{{\text{g}}k}^{2} \left( z \right)} {\text{d}}z + n_{\text{a}} R_{\text{da}} \int_{{L_{\text{g}} }}^{L} {Z_{{\text{a}}k}^{2} \left( z \right)} {\text{d}}z$$
(165)

For each case λ g < λ a, λ g = λ a and λ g > λ a, the solutions of C g(z, t) and C a(z, t) are derived as

$$C_{\text{g}} \left( {z,t} \right) = \sum\limits_{k = 1}^{\infty } {G_{k} Z_{{\text{g}}k} \left( z \right)} e^{{ - \delta_{k} t}} + u_{\text{g}} \left( z \right)$$
(166)
$$C_{\text{a}} \left( {z,t} \right) = \sum\limits_{k = 1}^{\infty } {G_{k} Z_{{\text{a}}k} \left( z \right)} e^{{ - \delta_{k} t}} + u_{\text{a}} \left( z \right)$$
(167)

Appendix 2: zero-mass-flux boundary condition

The solution for the governing equation Eq. (2) can be expressed as

$$C_{\text{m}} \left( {z,t} \right) = B_{1} \left( t \right) + B_{2} \left( t \right)z$$
(168)

where B 1(t) and B 2(t) are parameters to be determined. Substituting Eqs. (168) into (1), (3) and (4) results in

$$B_{1} \left( t \right) - B_{2} \left( t \right)L_{\text{m}} = S_{\text{lm}} C_{ 0}$$
(169)
$$B_{1} \left( t \right) = C_{\text{g}} \left( {0,t} \right)S_{\text{mg}}$$
(170)
$$B_{2} \left( t \right) = \frac{{n_{\text{g}} D_{\text{g}}^{*} }}{{D_{\text{m}} }}\left. {\frac{{\partial C_{\text{g}} (z,t)}}{\partial z}} \right|_{z = 0}$$
(171)

Substituting Eqs. (170) and (171) into (169) results in

$$C_{\text{g}} \left( {0,t} \right)S_{\text{mg}} - \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} }}{{D_{\text{m}} }}\left. {\frac{{\partial C_{\text{g}} (z,t)}}{\partial z}} \right|_{z = 0} = S_{\text{lm}} C_{ 0}$$
(172)

Because of the linear nature of Eqs. (172) and (5)–(16), the C g(z, t) and C a(z, t) can be solved by the superposition method (Lee et al. 1992; Chen et al. 2009). The solutions to C g(z, t) and C a(z, t) are expressed as follows:

$$C_{\text{g}} (z,t) = w_{\text{g}} (z) + y_{\text{g}} (z,t)$$
(173)
$$C_{\text{a}} (z,t) = w_{\text{a}} (z) + y_{\text{a}} (z,t)$$
(174)

In order that the governing equations and boundary conditions of y g(z, t) and y a(z, t) become homogeneous, w g(z) and w a(z) are set to satisfy

$$\frac{{D_{\text{g}}^{*} }}{{R_{\text{dg}} }}\frac{{{\text{d}}^{2} w_{\text{g}} \left( z \right)}}{{{\text{d}}z^{2} }} - \lambda_{\text{g}} w_{\text{g}} \left( z \right) = 0$$
(175)
$$\frac{{D_{\text{a}}^{*} }}{{R_{\text{da}} }}\frac{{{\text{d}}^{2} w_{\text{a}} \left( z \right)}}{{{\text{d}}z^{2} }} - \lambda_{\text{a}} w_{\text{a}} \left( z \right) = 0$$
(176)
$$w_{\text{g}} \left( 0 \right)S_{\text{mg}} - \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} }}{{D_{\text{m}} }}\left. {\frac{{{\text{d}}w_{\text{g}} \left( z \right)}}{{\text{d}}z}} \right|_{z = 0} = S_{\text{lm}} C_{ 0}$$
(177)
$$n_{\text{g}} D_{\text{g}}^{*} \left. {\frac{{{\text{d}}w_{\text{g}} \left( z \right)}}{{\text{d}}z}} \right|_{{z = L_{\text{g}} }} = n_{\text{a}} D_{\text{a}}^{*} \left. {\frac{{{\text{d}}w_{\text{a}} \left( z \right)}}{{\text{d}}z}} \right|_{{z = L_{\text{g}} }}$$
(178)
$$w_{\text{g}} \left( {L_{\text{g}} } \right) = w_{\text{a}} \left( {L_{\text{g}} } \right)$$
(179)
$$\left. {\frac{{{\text{d}}w_{\text{a}} (z)}}{{\text{d}}z}} \right|_{z = L} = 0$$
(180)

w g(z) and w a(z) are obtained as

$$w_{\text{g}} \left( z \right) = \frac{{C_{0} S_{\text{lm}} D_{\text{m}} }}{F}\left\{ {n_{\text{g}} D_{\text{g}}^{*} \varepsilon_{\text{g}} \cosh \left( {\varepsilon_{\text{a}} L_{\text{a}} } \right)\cosh \left[ {\varepsilon_{\text{g}} \left( {L_{\text{g}} - z} \right)} \right] + \, n_{\text{a}} D_{\text{a}}^{*} \varepsilon_{\text{a}} \sinh \left( {\varepsilon_{\text{a}} L_{\text{a}} } \right)\sinh \left[ {\varepsilon_{\text{g}} \left( {L_{\text{g}} - z} \right)} \right]} \right\}$$
(181)
$$w_{\text{a}} \left( z \right) = \frac{1}{F}C_{0} S_{\text{lm}} D_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \varepsilon_{\text{g}} \cosh \left[ {\varepsilon_{\text{a}} \left( {L - z} \right)} \right]$$
(182)

where

$$\varepsilon_{\text{g}} = \sqrt {\frac{{R_{\text{dg}} \lambda_{\text{g}} }}{{D_{\text{g}}^{*} }}}$$
(183)
$$\varepsilon_{\text{a}} = \sqrt {\frac{{R_{\text{da}} \lambda_{\text{a}} }}{{D_{\text{a}}^{*} }}}$$
(184)
$$\begin{aligned} F = n_{\text{g}} D_{\text{g}}^{*} \varepsilon_{\text{g}} \cosh \left( {\varepsilon_{\text{a}} L_{\text{a}} } \right)\left[ {S_{\text{mg}} D_{\text{m}} \cosh \left( {\varepsilon_{\text{g}} L_{\text{g}} } \right) + n_{\text{g}} D_{\text{g}}^{*} L_{\text{m}} \varepsilon_{\text{g}} \sinh \left( {\varepsilon_{\text{g}} L_{\text{g}} } \right)} \right] \\ + \, n_{\text{a}} D_{\text{a}}^{*} \varepsilon_{\text{a}} \sinh \left( {\varepsilon_{\text{a}} L_{\text{a}} } \right)\left[ {S_{\text{mg}} D_{\text{m}} \sinh \left( {\varepsilon_{\text{g}} L_{\text{g}} } \right) + n_{\text{g}} D_{\text{g}}^{*} L_{\text{m}} \varepsilon_{\text{g}} \cosh \left( {\varepsilon_{\text{g}} L_{\text{g}} } \right)} \right] \\ \end{aligned}$$
(185)

The governing equations, boundary conditions and initial conditions of y g(z, t) and y a(z, t) are as follows:

$$\frac{{\partial y_{\text{g}} \left( {z,t} \right)}}{\partial t} = \frac{{D_{\text{g}}^{*} }}{{R_{\text{dg}} }}\frac{{\partial^{2} y_{\text{g}} \left( {z,t} \right)}}{{\partial z^{2} }} - \lambda_{\text{g}} y_{\text{g}} \left( {z,t} \right)$$
(186)
$$\frac{{\partial y_{\text{a}} \left( {z,t} \right)}}{\partial t} = \frac{{D_{\text{a}}^{*} }}{{R_{\text{da}} }}\frac{{\partial^{2} y_{\text{a}} \left( {z,t} \right)}}{{\partial z^{2} }} - \lambda_{\text{a}} y_{\text{a}} \left( {z,t} \right)$$
(187)
$$y_{\text{g}} \left( {z,t} \right)\left| {_{z = 0} } \right.S_{\text{mg}} - \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} }}{{D_{\text{m}} }}\left. {\frac{{\partial y_{\text{g}} (z,t)}}{\partial z}} \right|_{z = 0} = 0$$
(188)
$$n_{\text{g}} D_{\text{g}}^{*} \left. {\frac{{\partial y_{\text{g}} (z,t)}}{\partial z}} \right|_{{z = L_{\text{g}} }} = n_{\text{a}} D_{\text{a}}^{*} \left. {\frac{{\partial y_{\text{a}} (z,t)}}{\partial z}} \right|_{{z = L_{\text{g}} }}$$
(189)
$$y_{\text{g}} \left( {L_{\text{g}} ,t} \right) = y_{\text{a}} \left( {L_{\text{g}} ,t} \right)$$
(190)
$$\left. {\frac{{\partial y_{\text{a}} (z,t)}}{\partial z}} \right|_{z = L} = 0$$
(191)
$$y_{\text{g}} \left( {z,0} \right) = - w_{\text{g}} \left( z \right)$$
(192)
$$y_{\text{a}} \left( {z,0} \right) = - w_{\text{a}} \left( z \right)$$
(193)

The y g(z, t) and y a(z, t) can be solved by the method of separation of variables. The solutions to y g (z, t) and y a(z, t) are expressed as follows:

$$y_{\text{g}} (z,t) = Z_{\text{g}} (z)T_{\text{g}} (t)$$
(194)
$$y_{\text{a}} (z,t) = Z_{\text{a}} (z)T_{\text{a}} (t)$$
(195)

T g(t) and T a(t) are obtained as

$$T_{\text{g}} \left( t \right) = T_{\text{a}} \left( t \right) = e^{ - \psi t}$$
(196)

Z g(z) and Z a(z) satisfy

$$\frac{{{\text{d}}^{2} Z_{\text{g}} \left( z \right)}}{{{\text{d}}z^{2} }} + \left( {\psi - \lambda_{\text{g}} } \right)\frac{{R_{\text{dg}} }}{{D_{\text{g}}^{*} }}Z_{\text{g}} \left( z \right) = 0$$
(197)
$$\frac{{{\text{d}}^{2} Z_{\text{a}} \left( z \right)}}{{{\text{d}}z^{2} }} + \left( {\psi - \lambda_{\text{a}} } \right)\frac{{R_{\text{da}} }}{{D_{\text{a}}^{*} }}Z_{\text{a}} \left( z \right) = 0$$
(198)
$$Z_{\text{g}} \left( 0 \right)S_{\text{mg}} - \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} }}{{D_{\text{m}} }}\left. {\frac{{{{\text{d}}Z}_{\text{g}} \left( z \right)}}{{\text{d}}z}} \right|_{z = 0} = 0$$
(199)
$$n_{\text{g}} D_{\text{g}}^{*} \left. {\frac{{{{\text{d}}Z}_{\text{g}} \left( z \right)}}{{\text{d}}z}} \right|_{{z = L_{\text{g}} }} = n_{\text{a}} D_{\text{a}}^{*} \left. {\frac{{{{\text{d}}Z}_{\text{a}} \left( z \right)}}{{\text{d}}z}} \right|_{{z = L_{\text{g}} }}$$
(200)
$$Z_{\text{g}} \left( {L_{\text{g}} } \right) = Z_{\text{a}} \left( {L_{\text{g}} } \right)$$
(201)
$$\left. {\frac{{{{\text{d}}Z}_{\text{a}} (z)}}{{\text{d}}z}} \right|_{z = L} = 0$$
(202)

With the definitions

$$\mu_{\text{g}} = \sqrt {\frac{{R_{\text{dg}} }}{{D_{\text{g}}^{*} }}\left| {\lambda_{\text{g}} - \psi } \right|} \quad {\text{and}}\quad \mu_{\text{a}} = \sqrt {\frac{{R_{\text{da}} }}{{D_{\text{a}}^{*} }}\left| {\lambda_{\text{a}} - \psi } \right|}$$
(203)

the solutions of the differential Eqs. (197) and (198) which obey the boundary condition Eq. (202) are

$$Z_{\text{g}} \left( z \right) = \left\{ {\begin{array}{ll} b_{{\text{g}}1} \sinh \left( {\mu_{\text{g}} z} \right) + b_{{\text{g}}2} \cosh \left( {\mu_{\text{g}} z} \right) & \quad \psi lt; \lambda_{\text{g}} \\ b_{{\text{g}}1} z + b_{{\text{g}}2} & \quad \psi = \lambda_{\text{g}} \\ b_{{\text{g}}1} \sinh \left( {\mu_{\text{g}} z} \right) + b_{{\text{g}}2} \cosh \left( {\mu_{\text{g}} z} \right) & \quad \psi > \lambda_{\text{g}} \\ \end{array}} \right.$$
(204)
$$Z_{\text{a}} \left( z \right) = \left\{ \begin{array}{ll} b_{\text{a}} \cosh \left[ {\omega_{\text{a}} \left( {L - z} \right)} \right] & \quad \psi < \lambda_{\text{a}} \\ b_{\text{a}} &\quad \psi = \lambda_{\text{a}} \\ b_{\text{a}} \cos \left[ {\omega_{\text{a}} \left( {L - z} \right)} \right] & \quad \psi > \lambda_{\text{a}} \\ \end{array} \right.$$
(205)

Substitution of Eqs. (204) and (205) into boundary conditions Eqs. (199)–(201) for any combination ψ < λ g, ψ = λ g, or ψ > λ g and ψ < λ a, ψ = λ a, or ψ > λ a yields a set of three homogeneous equations for the three unknowns b g1, b g2 and b a:

$${\mathbf{P}} \cdot \left( {\begin{array}{*{20}c} {b_{{\text{g}}1} } \\ {b_{{\text{g}}2} } \\ {b_{\text{a}} } \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \right)$$
(206)

with P being a 3 × 3 matrix which depends on the characteristic parameters of the barrier system and on ψ. Non-trivial solutions of this set of homogeneous equations, i.e., a solution Z g(z) > 0 and Z a(z) > 0, only exist if the determinant of the matrix P is zero. Since ψ is the only parameter in P which is not yet determined, the equation det P = 0 is the equation which determines the values of ψ for which a non-trivial solution of Eqs. (197)–(201) exists. The equation det P = 0 is the eigenvalue equation for ψ.

The direct evaluation of det P for the nine possible combinations ψ < λ g, ψ = λ g, or ψ > λ g and ψ < λ a, ψ = λ a, or ψ > λ a shows that det P is strictly positive for any value of ψ except for the following three combinations λ a < ψ < λ g, λ g < ψ < λ a and λ g, λ a < ψ. Therefore, non-trivial solutions can only exist for these three combinations.

The equation det P = 0 for the combination λ a < ψ < λ g is

$$\begin{aligned} \det \, {\mathbf{P}}{ \,=\, }n_{\text{a}} D_{\text{a}}^{*} \mu_{\text{a}} \sin \left( {\mu_{\text{a}} L_{\text{a}} } \right)\left[ {\sinh \left( {\mu_{\text{g}} L_{\text{g}} } \right) + \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \mu_{\text{g}} }}{{D_{\text{m}} S_{\text{mg}} }}\cosh \left( {\mu_{\text{g}} L_{\text{g}} } \right)} \right] \hfill \\\qquad\quad - \, n_{\text{g}} D_{\text{g}}^{*} \mu_{\text{g}} \cos \left( {\mu_{\text{a}} L_{\text{a}} } \right)\left[ {\cosh \left( {\mu_{\text{g}} L_{\text{g}} } \right) + \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \mu_{\text{g}} }}{{D_{\text{m}} S_{\text{mg}} }}\sinh \left( {\mu_{\text{g}} L_{\text{g}} } \right)} \right] = 0 \hfill \\ \end{aligned}$$
(207)

Let the eigenvalues be denoted by ψ i and the corresponding eigenfunctions by Z gi (z) and Z ai (z). The parameters μ gi and μ ai are defined as

$$\mu_{{\text{g}}i} = \sqrt {\frac{{R_{\text{dg}} }}{{D_{\text{g}}^{*} }}\left| {\lambda_{\text{g}} - \psi_{i} } \right|} \quad {\text{and}}\quad \mu_{{\text{a}}i} = \sqrt {\frac{{R_{\text{da}} }}{{D_{\text{a}}^{*} }}\left| {\lambda_{\text{a}} - \psi_{i} } \right|}$$
(208)

Equation (207) may or may not have a solution in the interval (λ a, λ g). If a solution ψ i exists, the corresponding eigenfunctions are (with the normalization b ai  = 1)

$$Z_{{\text{g}}i} \left( z \right) = b_{{\text{g}}1i} \sinh \left( {\mu_{{\text{g}}i} z} \right) + b_{{\text{g}}2i} \cosh \left( {\mu_{{\text{g}}i} z} \right)\quad {\text{if}}\quad \lambda_{\text{a}} < \psi_{i} < \lambda_{\text{g}}$$
(209)
$$Z_{{\text{a}}i} \left( z \right) = \cos \left[ {\mu_{{\text{a}}i} \left( {L - z} \right)} \right]\quad {\text{if}}\quad \lambda_{\text{a}} < \psi_{i} < \lambda_{\text{g}}$$
(210)

with

$$b_{{\text{g}}1i} = D_{\text{m}} S_{\text{mg}} \cos \left( {\mu_{{\text{a}}i} L_{\text{a}} } \right)/\left[ {D_{\text{m}} S_{\text{mg}} \sinh \left( {\mu_{{\text{g}}i} L_{\text{g}} } \right) +\, L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \mu_{{\text{g}}k} \cosh \left( {\mu_{{\text{g}}i} L_{\text{g}} } \right)} \right]$$
(211)
$$b_{{\text{g}}2i} = b_{{\text{g}}1i} \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \mu_{{\text{g}}i} }}{{D_{\text{m}} S_{\text{mg}} }}$$
(212)

The equation det P = 0 for the combination λ g, λ a < ψ is

$$\begin{aligned} \det \, {\mathbf{P}}\,{ = }\,n_{\text{a}} D_{\text{a}}^{*} \mu_{\text{a}} \sin \left( {\mu_{\text{a}} L_{\text{a}} } \right)\left[ {\sin \left( {\mu_{\text{g}} L_{\text{g}} } \right) + \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \mu_{\text{g}} }}{{D_{\text{m}} S_{\text{mg}} }}\cos \left( {\mu_{\text{g}} L_{\text{g}} } \right)} \right] \hfill \\ - \, n_{\text{g}} D_{\text{g}}^{*} \mu_{\text{g}} \cos \left( {\mu_{\text{a}} L_{\text{a}} } \right)\left[ {\cos \left( {\mu_{\text{g}} L_{\text{g}} } \right) - \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \mu_{\text{g}} }}{{D_{\text{m}} S_{\text{mg}} }}\sin \left( {\mu_{\text{g}} L_{\text{g}} } \right)} \right] = 0 \hfill \\ \end{aligned}$$
(213)

Since the interval of the possible solutions is not bounded from above, this equation always has solutions. With the same definition of ψ i , Z gi (z) and Z ai (z) as above and the same normalization b ai  = 1, the eigenfunctions are

$$Z_{{\text{g}}i} \left( z \right) = b_{{\text{g}}1i} \sin \left( {\mu_{{\text{g}}i} z} \right) + b_{{\text{g}}2i} \cos \left( {\mu_{{\text{g}}i} z} \right)\quad {\text{if}}\quad \lambda_{\text{a}} ,\lambda_{\text{g}} < \psi_{i}$$
(214)
$$Z_{{\text{a}}i} \left( z \right) = \cos \left[ {\mu_{{\text{a}}i} \left( {L - z} \right)} \right]\quad {\text{if}}\quad \lambda_{\text{a}} ,\lambda_{\text{g}} < \psi_{i}$$
(215)

with

$$b_{{\text{g}}1i} = D_{\text{m}} S_{\text{mg}} \cos \left( {\mu_{{\text{a}}i} L_{\text{a}} } \right)/\left[ {D_{\text{m}} S_{\text{mg}} \sin \left( {\mu_{{\text{g}}i} L_{\text{g}} } \right) + \, L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \mu_{{\text{g}}k} \cos \left( {\mu_{{\text{g}}i} L_{\text{g}} } \right)} \right]$$
(216)
$$b_{{\text{g}}2i} = b_{{\text{g}}1i} \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \mu_{{\text{g}}i} }}{{D_{\text{m}} S_{\text{mg}} }}$$
(217)

The equation det P = 0 for the combination λ g < ψ < λ a is

$$\begin{aligned} \det \, {\mathbf{P}}\,{ = }\,n_{\text{a}} D_{\text{a}}^{*} \mu_{\text{a}} \sinh \left( {\mu_{\text{a}} L_{\text{a}} } \right)\left[ {\sin \left( {\mu_{\text{g}} L_{\text{g}} } \right) + \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \mu_{\text{g}} }}{{D_{\text{m}} S_{\text{mg}} }}\cos \left( {\mu_{\text{g}} L_{\text{g}} } \right)} \right] \hfill \\ + \,n_{\text{g}} D_{\text{g}}^{*} \mu_{\text{g}} \cosh \left( {\mu_{\text{a}} L_{\text{a}} } \right)\left[ {\cos \left( {\mu_{\text{g}} L_{\text{g}} } \right) - \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \mu_{\text{g}} }}{{D_{\text{m}} S_{\text{mg}} }}\sin \left( {\mu_{\text{g}} L_{\text{g}} } \right)} \right] = 0 \hfill \\ \end{aligned}$$
(218)

Equation (218) may or may not have a solution in the interval (λ g, λ a). If a solution exists, with the same definition of ψ i , Z gi (z) and Z ai (z) as above and the same normalization b ai  = 1 the eigenfunctions are

$$Z_{{\text{g}}i} \left( z \right) = b_{{\text{g}}1i} \sin \left( {\mu_{{\text{g}}i} z} \right) + b_{{\text{g}}2i} \cos \left( {\mu_{{\text{g}}i} z} \right){\text{ if }}\lambda_{\text{g}} < \psi_{i} < \lambda_{\text{a}}$$
(219)
$$Z_{{\text{a}}i} \left( z \right) = \cosh \left[ {\mu_{{\text{a}}i} \left( {L - z} \right)} \right]\quad {\text{ if }}\lambda_{\text{g}} < \psi_{i} < \lambda_{\text{a}}$$
(220)

with

$$b_{{\text{g}}1i} = D_{\text{m}} S_{\text{mg}} \cosh \left( {\mu_{{\text{a}}i} L_{\text{a}} } \right)/\left[ {D_{\text{m}} S_{\text{mg}} \sin \left( {\mu_{{\text{g}}i} L_{\text{g}} } \right) + \, L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \mu_{{\text{g}}k} \cos \left( {\mu_{{\text{g}}i} L_{\text{g}} } \right)} \right]$$
(221)
$$b_{{\text{g}}2i} = b_{{\text{g}}1i} \frac{{L_{\text{m}} n_{\text{g}} D_{\text{g}}^{*} \mu_{{\text{g}}i} }}{{D_{\text{m}} S_{\text{mg}} }}$$
(222)

For each case λ g < λ a, λ g = λ a and λ g > λ a, the solutions of Eqs. (186)–(193) are

$$y_{\text{g}} \left( {z,t} \right) = \sum\limits_{i = 1}^{\infty } {U_{i} Z_{{\text{g}}i} \left( z \right)} e^{{ - \psi_{i} t}}$$
(223)
$$y_{\text{a}} \left( {z,t} \right) = \sum\limits_{k = 1}^{\infty } {U_{i} Z_{{\text{a}}i} \left( z \right)} e^{{ - \psi_{i} t}}$$
(224)

with ψ i , Z gi (z) and Z ai (z) according to Eqs. (207)–(212), (213)–(217) or (218)–(224) depending on the relative size of ψ i , λ a and λ g.

The orthogonality of Z gi (z) (0 < z < L g) and Z ai (z) (L g < z < L) can be demonstrated by reference to the argumentation presented in Eq. (163). Using the orthogonality of Z gi (z) (0 < z < L g) and Z ai (z) (L g < z < L), the following formulation for U i can be obtained as

$$U_{i} = \frac{1}{V}\left[ {n_{\text{g}} R_{\text{dg}} \int_{0}^{{L_{\text{g}} }} { - w_{\text{g}} \left( z \right)Z_{{\text{g}}i} \left( z \right)} {\text{d}}z + n_{\text{a}} R_{\text{da}} \int_{{L_{\text{g}} }}^{L} { - w_{\text{a}} \left( z \right)Z_{{\text{a}}i} \left( z \right)} {\text{d}}z} \right]$$
(225)

with

$$V_{i} = n_{\text{g}} R_{\text{dg}} \int_{0}^{{L_{\text{g}} }} {Z_{{\text{g}}i}^{2} \left( z \right)} {\text{d}}z + n_{\text{a}} R_{\text{da}} \int_{{L_{\text{g}} }}^{L} {Z_{{\text{a}}i}^{2} \left( z \right)} {\text{d}}z$$
(226)

For each case λ g < λ a, λ g = λ a and λ g > λ a, the solutions of C g(z, t) and C a(z, t) are derived as

$$C_{\text{g}} \left( {z,t} \right) = \sum\limits_{i = 1}^{\infty } {U_{i} Z_{{\text{g}}i} \left( z \right)} e^{{ - \psi_{i} t}} + w_{\text{g}} \left( z \right)$$
(227)
$$C_{\text{a}} \left( {z,t} \right) = \sum\limits_{i = 1}^{\infty } {U_{i} Z_{{\text{a}}i} \left( z \right)} e^{{ - \psi_{i} t}} + w_{\text{a}} \left( z \right).$$
(228)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Shi, J. & He, J. Analytical solutions for diffusion of organic contaminant through GCL triple-layer composite liner considering degradation in liner. Environ Earth Sci 75, 1371 (2016). https://doi.org/10.1007/s12665-016-6145-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6145-9

Keywords

Navigation