Skip to main content
Log in

Overview of quantum memory protection and adiabaticity induction by fast signal control

量子存储保护及快信号调控诱导绝热性

  • Review
  • Physics & Astronomy
  • Published:
Science Bulletin

Abstract

A quantum memory or information processing device is subject to the disturbance from its surrounding environment or the inevitable leakage due to its contact with other systems. To tackle these problems, several control protocols have been proposed for quantum memory or storage. Among them, the fast signal control or dynamical decoupling based on external pulse sequences provides a prevailing strategy aimed at suppressing decoherence and preventing the target systems from the leakage or diffusion process. In this paper, we review the applications of this protocol in protecting quantum memory under the non-Markovian dissipative noise and maintaining systems on finite speed adiabatic passages without leakage therefrom. We analyze perturbative and nonperturbative dynamical equations for leakage and control, including second-order master equation, quantum-state-diffusion equation, and one-component master equation derived from Feshbach PQ-partitioning technique. It turns out that the quality of fast-modulated signal control is insensitive to configurations of the applied pulse sequences. Specifically, decoherence and leakage will be greatly suppressed as long as the control sequence is able to effectively shift the system beyond the bath cutoff frequency, almost independent of the details of the control sequences that could be ideal pulses, regular rectangular pulses, random pulses and even noisy pulses.

摘要

任何量子存储和信息处理器时时刻刻都受困于外界环境的干扰或因为其他系统关联而引起的量子态外泄. 为了应对这些问题, 人们提出了多种量子调控方案. 这其中一大类方案由快信号调制或者基于激光脉冲序列的动力学解耦构成, 旨在压制量子存储器件的退相干, 并且阻止系统状态的外泄或扩散. 本文回顾了一些应用此类量子调控方案的工作. 人们可以保护处于非马尔可夫耗散噪声中的量子存储器件; 或者在免于外泄的前提下, 控制系统以进行绝热演化. 通过分析各类动力学方程, 包括二阶微扰主方程、基于非微扰论的量子态扩散方程、以及由PQ分解得到的单变量主方程, 发现快速信号调制的效果与所施加脉冲序列的形态关系微弱. 脉冲序列只需能够有效地将系统本征频率调至高于环境截断频率, 系统量子态退相干就可以在被压制住. 量子调控的效果其实与调控脉冲序列的具体细节无关. 人们可以使用任何形态的激光, 包括理想脉冲、矩形波脉冲、随机脉冲、甚至噪声型脉冲.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wiseman HM, Milburn GJ (2009) Quantum measurement and control. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Breuer HP, Petruccione F (2002) Theory of open quantum systems. Oxford University Press, Oxford

    Google Scholar 

  3. Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge

    Google Scholar 

  4. Wu LA, Kurizki G, Brumer P (2009) Master equation and control of an open quantum system with leakage. Phys Rev Lett 102:080405

    Article  Google Scholar 

  5. Viola L, Knill E, Lloyd S (1999) Dynamical decoupling of open quantum systems. Phys Rev Lett 82:2417

    Article  Google Scholar 

  6. Uhrig GS (2008) Exact results on dynamical decoupling by \(\pi\) pulses in quantum information processes. New J Phys 10:083024

    Article  Google Scholar 

  7. Uhrig GS (2009) Concatenated control sequences based on optimized dynamic decoupling. Phys Rev Lett 102:120502

    Article  Google Scholar 

  8. West JR, Lidar DA, Fong BH et al (2010) High fidelity quantum gates via dynamical decoupling. Phys Rev Lett 105:230503

    Article  Google Scholar 

  9. Kofman AG, Kurizki G (2004) Unified theory of dynamically suppressed qubit decoherence in thermal baths. Phys Rev Lett 93:130406

    Article  Google Scholar 

  10. Mukhtar M, Soh WT, Saw TB et al (2010) Protecting unknown two-qubit entangled states by nesting Uhrig’s dynamical decoupling sequences. Phys Rev A 82:052338

    Article  Google Scholar 

  11. Clausen J, Bensky G, Kurizki G (2010) Bath-optimized minimal-energy protection of quantum operations from decoherence. Phys Rev Lett 104:040401

    Article  Google Scholar 

  12. Xue S, Zhang J, Wu R et al (2011) Quantum operation for a one-qubit system under a non-Markovian environment. J Phys B 44:154016

    Article  Google Scholar 

  13. Bensky G, Amsüss R, Majer J et al (2011) Controlling quantum information processing in hybrid systems on chips. Quantum Inf Process 10:1037–1060

    Article  Google Scholar 

  14. Zhang J, Liu YX, Zhang WM et al (2011) Deterministic chaos can act as a decoherence suppressor. Phys Rev B 84:214304

    Article  Google Scholar 

  15. Jing J, Wu LA, You JQ et al (2012) Feshbach projection-operator partitioning for quantum open systems: stochastic approach. Phys Rev A 85:032123

    Article  Google Scholar 

  16. Qiu N, Gong J, Wang XB (2012) Protecting multi-qubit states in computational subspaces by nested dynamical decoupling sequences. J Phys B 45:045501

    Article  Google Scholar 

  17. Wang ZM, Wu LA, Jing J et al (2012) Nonperturbative dynamical decoupling control: a spin-chain model. Phys Rev A 86:032303

    Article  Google Scholar 

  18. Born M, Fock V (1928) Beweis des Adiabatensatzes. Z Phys 51:165–180

    Google Scholar 

  19. Messiah A (1962) Quantum mechanics. Amsterdam, North-Holland

    Google Scholar 

  20. Wu ZY, Yang H (2005) Validity of the quantum adiabatic theorem. Phys Rev A 72:012114

    Article  Google Scholar 

  21. Zhang J (2012) Geometric method in quantum control. Chin Sci Bull 57:2223–2227

    Article  Google Scholar 

  22. Fang G, Wang Y, Feng S (2012) Optimal quantum measurement of finite-dimensional systems and coherent anti-Stokes Raman spectroscopy. Chin Sci Bull 57:2215–2222

    Article  Google Scholar 

  23. Viola L, Lloyd S (1998) Dynamical suppression of decoherence in two-state quantum systems. Phys Rev A 58:2733

    Article  Google Scholar 

  24. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638

    Article  Google Scholar 

  25. Uhrig GS (2007) Keeping a quantum bit alive by optimized \(\pi\)-pulse sequences. Phys Rev Lett 98:100504

    Article  Google Scholar 

  26. Yang W, Liu RB (2008) Universality of Uhrig dynamical decoupling for suppressing qubit pure dephasing and relaxation. Phys Rev Lett 101:180403

    Article  Google Scholar 

  27. Biercuk MJ, Doherty AC, Uys H (2011) Dynamical decoupling sequence construction as a filter-design problem. J Phys B 44:154002

    Article  Google Scholar 

  28. Chaudhry AZ, Gong J (2012) Decoherence control: universal protection of two-qubit states and two-qubit gates using continuous driving fields. Phys Rev A 85:012315

    Article  Google Scholar 

  29. Wu LA, Lidar DA (2002) Creating decoherence-free subspaces using strong and fast pulses. Phys Rev Lett 88:207902

    Article  Google Scholar 

  30. Agarwal GS (1999) Control of decoherence and relaxation by frequency modulation of a heat bath. Phys Rev A 61:013809

    Article  Google Scholar 

  31. Kofman AG, Kurizki G (2001) Universal dynamical control of quantum mechanical decay: modulation of the coupling to the continuum. Phys Rev Lett 87:270405

    Article  Google Scholar 

  32. Viola L, Knill E (2003) Robust dynamical decoupling of quantum systems with bounded controls. Phys Rev Lett 90:037901

    Article  Google Scholar 

  33. Alicki R, Horodecki M, Horodecki P et al (2004) Optimal strategy for a single-qubit gate and the trade-off between opposite types of decoherence. Phys Rev A 70:010501

    Article  Google Scholar 

  34. Brion E, Akulin VM, Comparat D et al (2005) Coherence protection by the quantum Zeno effect and nonholonomic control in a Rydberg rubidium isotope. Phys Rev A 71:052311

    Article  Google Scholar 

  35. Facchi P, Tasaki S, Pascazio S et al (2005) Control of decoherence: analysis and comparison of three different strategies. Phys Rev A 71:022302

    Article  Google Scholar 

  36. Gordon G, Kurizki G (2007) Universal dephasing control during quantum computation. Phys Rev A 76:042310

    Article  Google Scholar 

  37. Gordon G, Erez N, Kurizki G (2007) Universal dynamical decoherence control of noisy single- and multi-qubit systems. J Phys B 40:S75–S93

    Article  Google Scholar 

  38. Gordon G, Kurizki G, Lidar DA (2008) Optimal dynamical decoherence control of a qubit. Phys Rev Lett 101:010403

    Article  Google Scholar 

  39. Li B, Yu Z, Fei SM et al (2013) Time optimal quantum control of two-qubit systems. Sci China Phys Mech Astron 56:2116–2121

    Article  Google Scholar 

  40. Jing J, Wu LA, You JQ et al (2013) Nonperturbative quantum dynamical decoupling. Phys Rev A 88:022333

    Article  Google Scholar 

  41. Jing J, Wu LA (2013) Control of decoherence with no control. Sci Rep 3:2746

    Article  Google Scholar 

  42. Jing J, Bishop CA, Wu LA (2014) Nonperturbative dynamical decoupling with random control. Sci Rep 4:6229

    Article  Google Scholar 

  43. Diósi L, Strunz WT (1997) The non-Markovian stochastic Schrödinger equation for open systems. Phys Lett A 235:569

    Article  Google Scholar 

  44. Diósi L, Gisin N, Strunz WT (1998) Non-Markovian quantum state diffusion. Phys Rev A 58:1699

    Article  Google Scholar 

  45. Strunz WT, Diósi L, Gisin N (1999) Open system dynamics with non-Markovian quantum trajectories. Phys Rev Lett 82:1801

    Article  Google Scholar 

  46. Yu T, Diósi L, Gisin N et al (1999) Non-Markovian quantum-state diffusion: perturbation approach. Phys Rev A 60:91

    Article  Google Scholar 

  47. Jing J, Yu T (2010) Non-Markovian relaxation of a three-level system: quantum trajectory approach. Phys Rev Lett 105:240403

    Article  Google Scholar 

  48. Jing J, Wu LA, Yu T et al (2014) One-component dynamical equation and noise-induced adiabaticity. Phys Rev A 89:032110

    Article  Google Scholar 

  49. Hahn EL (1950) Spin echoes. Phys Rev 80:580–594

    Article  Google Scholar 

  50. Alicki R, Horodecki M, Horodecki P et al (2002) Dynamical description of quantum computing: generic nonlocality of quantum noise. Phys Rev A 65:062101

    Article  Google Scholar 

  51. Jing J, Zhao X, You JQ et al (2012) Time-local quantum-state-diffusion equation for multilevel quantum systems. Phys Rev A 85:042106

    Article  Google Scholar 

  52. Jing J, Zhao X, You JQ et al (2013) Many-body quantum trajectories of non-Markovian open systems. Phys Rev A 88:052122

    Article  Google Scholar 

  53. Grebogi C, Ott E, Yorke JA (1983) Crises, sudden changes in chaotic attractors, and transient chaos. Phys D Nonlinear Phenom 7:181–200

    Article  Google Scholar 

  54. Kim C, Lee EK, Hänggi P et al (2007) Numerical method for solving stochastic differential equations with Poissonian white shot noise. Phys Rev E 76:011109

    Article  Google Scholar 

  55. Spiechowicz J, Luczka J, Hänggi P (2013) Absolute negative mobility induced by white Poissonian noise. J Stat Mech Theor Exp P02044

  56. Lutchyn RM, Cywinski L, Nave CP et al (2008) Quantum decoherence of a charge qubit in a spin-fermion model. Phys Rev B 78:024508

    Article  Google Scholar 

  57. Zhang P, Ai Q, Li Y et al (2014) Dynamics of quantum zeno and anti-zeno effects in an open system. Sci China Phys Mech Astron 57:194–207

    Article  Google Scholar 

  58. Oreg J, Hioe FT, Eberly JH (1984) Adiabatic following in multilevel systems. Phys Rev A 29:690

    Article  Google Scholar 

  59. Bergmann K, Theuer H, Shore BW (1998) Coherent population transfer among quantum states of atoms and molecules. Rev Mod Phys 70:1003–1025

    Article  Google Scholar 

  60. Král P, Thanopulos I, Shapiro M (2007) Coherently controlled adiabatic passage. Rev Mod Phys 79:53–77

    Article  Google Scholar 

  61. Oh S, Shim YP, Fei J et al (2013) Resonant adiabatic passage with three qubits. Phys Rev A 87:022332

    Article  Google Scholar 

  62. Berry M (1984) Quantal phase factors accompanying adiabatic changes. Proc R Soc Lond A 392:45–57

    Article  Google Scholar 

  63. Wilczek F, Zee A (1984) Appearance of gauge structure in simple dynamical systems. Phys Rev Lett 52:2111

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basque Government (IT472-10), the Spanish MICINN (FIS2012-36673-C03-03), the Basque Country University UFI (11/55-01-2013), the National Natural Science Foundation of China (11175110) and the Science and Technology Development Program of Jilin Province of China (20150519021JH).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-Ao Wu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, J., Wu, LA. Overview of quantum memory protection and adiabaticity induction by fast signal control. Sci. Bull. 60, 328–335 (2015). https://doi.org/10.1007/s11434-015-0727-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0727-x

Keywords

Navigation