Skip to main content
Log in

Copper(I)/SaBOX catalyzed highly diastereo- and enantio-selective cyclopropanation of cis-1,2-disubstituted olefins with α-nitrodiazoacetates

  • Article
  • Chemistry
  • Published:
Science Bulletin

Abstract

A copper-catalyzed highly stereoselective cyclopropanation of 1,2-disubstituted olefins with α-nitrodiazo acetates has been developed, giving the desired products in up to 97 % yields, up to >99/1 dr and up to 98 % ee, which provides an efficient access to the synthesis of optical active cyclopropane α-amino acids and unnatural α-amino acid derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1

Similar content being viewed by others

References

  1. Brackmann F, de Meijere A (2007) Natural occurrence, syntheses, and applications of cyclopropyl-group-containing alpha-amino acids. 1. 1-Aminocyclopropanecarboxylic acid and other 2,3-methanoamino acids. Chem Rev 107:4493–4537

    Article  Google Scholar 

  2. Brackmann F, de Meijere A (2007) Natural occurrence, syntheses, and applications of cyclopropyl-group-containing alpha-amino acids. 2. 3,4- and 4,5-Methanoamino acids. Chem Rev 107:4538–4583

    Article  Google Scholar 

  3. Seebach D, Haner R, Vettiger T (1987) Nucleophilic ring-opening of aryl-α-nitrocyclopropanecarboxylates with sterically protected but electronically effective carbonyl and nitro-group—a new principle of α-amino-acid synthesis (2-aminobutanoic acid a4-synthon). Helv Chim Acta 70:1507–1515

    Article  Google Scholar 

  4. Vettiger T, Seebach D (1990) Nucleophilic ring-opening of aryl 1-nitro-1-cyclopropanecarboxylate with sterically protected, but electronically effective carbonyl and nitro-group—a new principle of amino-acid synthesis. Liebigs Ann Chem 195–201

  5. Charette AB, Wurz R (2003) Progress towards asymmetric intermolecular and intramolecular cyclopropanations using α-nitro-α-diazo carbonyl substrates. J Mol Catal A Chem 196:83–91

    Article  Google Scholar 

  6. Lindsay VN, Lin W, Charette AB (2009) Experimental evidence for the all-up reactive conformation of chiral rhodium(II) carboxylate catalysts: enantioselective synthesis of cis-cyclopropane α-amino acids. J Am Chem Soc 131:16383–16385

    Article  Google Scholar 

  7. Zhu S, Perman JA, Zhang XP (2008) Acceptor/acceptor-substituted diazo reagents for carbene transfers: cobalt-catalyzed asymmetric Z-cyclopropanation of alkenes with α-nitrodiazoacetates. Angew Chem Int Ed 47:8460–8463

    Article  Google Scholar 

  8. Doyle MP, McKervey MA, Ye T (1998) Modern catalytic methods for organic synthesis with diazo compounds: from cyclopropanes to ylides. Wiley, New York

    Google Scholar 

  9. Davies HML, Antoulinakis EG (2001) Intermolecular metal-catalyzed carbenoid cyclopropanations. Organic reactions, vol 57. Wiley, New York, pp 1–326

    Google Scholar 

  10. Lebel H, Marcoux JF, Molinaro C et al (2003) Stereoselective cyclopropanation reactions. Chem Rev 103:977–1050

    Article  Google Scholar 

  11. Roy MN, Lindsay VNG, Charette AB (2011) Stereoselective synthesis 1: stereoselective reactions of carbon–carbon double bonds. Georg Thieme-Verlag, New York

    Google Scholar 

  12. Davies HML, Bruzinski PR, Lake DH et al (1996) Asymmetric cyclopropanations by rhodium(II) N-(arylsulfonyl)prolinate catalyzed decomposition of vinyldiazomethanes in the presence of alkenes. Practical enantioselective synthesis of the four stereoisomers of 2-phenylcyclopropan-1-amino Acid. J Am Chem Soc 118:6897–6907

    Article  Google Scholar 

  13. Denton JR, Cheng K, Davies HML (2008) Stereoselective construction of nitrile-substituted cyclopropanes. Chem Commun 10:1238–1240

    Article  Google Scholar 

  14. Lin W, Charette AB (2005) Rhodium-catalyzed asymmetric intramolecular cyclopropanation of substituted allylic cyanodiazoacetates. Adv Synth Catal 347:1547–1552

    Article  Google Scholar 

  15. Lindsay VN, Fiset D, Gritsch PJ et al (2013) Stereoselective Rh2(S-IBAZ)4-catalyzed cyclopropanation of alkenes, alkynes, and allenes: asymmetric synthesis of diacceptor cyclopropylphosphonates and alkylidenecyclopropanes. J Am Chem Soc 135:1463–1470

    Article  Google Scholar 

  16. Lindsay VN, Nicolas C, Charette AB (2011) Asymmetric Rh(II)-catalyzed cyclopropanation of alkenes with diacceptor diazo compounds: p-methoxyphenyl ketone as a general stereoselectivity controlling group. J Am Chem Soc 133:8972–8981

    Article  Google Scholar 

  17. Marcoux D, Azzi S, Charette AB (2009) TfNH2 as achiral hydrogen-bond donor additive to enhance the selectivity of a transition metal catalyzed reaction. Highly enantio- and diastereoselective rhodium-catalyzed cyclopropanation of alkenes using α-cyano diazoacetamide. J Am Chem Soc. 131:6970–6972

    Article  Google Scholar 

  18. Marcoux D, Charette AB (2008) Trans-directing ability of amide groups in cyclopropanation: application to the asymmetric cyclopropanation of alkenes with diazo reagents bearing two carboxy groups. Angew Chem Int Ed 47:10155–10158

    Article  Google Scholar 

  19. Marcoux D, Goudreau SR, Charette AB (2009) Trans-directing ability of the amide group: enabling the enantiocontrol in the synthesis of 1,1-dicarboxy cyclopropanes. Reaction development, scope, and synthetic applications. J Org Chem 74:8939–8955

    Article  Google Scholar 

  20. Nishimura T, Maeda Y, Hayashi T (2010) Asymmetric cyclopropanation of alkenes with dimethyl diazomalonate catalyzed by chiral diene-rhodium complexes. Angew Chem Int Ed 49:7324–7327

    Article  Google Scholar 

  21. Xu X, Lu H, Ruppel JV et al (2011) Highly asymmetric intramolecular cyclopropanation of acceptor-substituted diazoacetates by Co(II)-based metalloradical catalysis: iterative approach for development of new-generation catalysts. J Am Chem Soc 133:15292–15295

    Article  Google Scholar 

  22. Xu X, Zhu S, Cui X et al (2013) Cobalt(II)-catalyzed asymmetric olefin cyclopropanation with α-ketodiazoacetates. Angew Chem Int Ed 52:11857–11861

    Article  Google Scholar 

  23. Zhu S, Xu X, Perman JA et al (2010) A general and efficient cobalt(II)-based catalytic system for highly stereoselective cyclopropanation of alkenes with α-cyanodiazoacetates. J Am Chem Soc 132:12796–12799

    Article  Google Scholar 

  24. Johansen MB, Kerr MA (2010) Direct functionalization of indoles: copper-catalyzed malonyl carbenoid insertions. Org Lett 12:4956–4959

    Article  Google Scholar 

  25. Titanyuk ID, Beletskaya IP, Peregudov AS et al (2007) Trifluoromethylated cyclopropanes and epoxides from CuI-mediated transformations of α-trifluoromethyl-diazophosphonate. J Fluor Chem 128:723–728

    Article  Google Scholar 

  26. Moreau B, Charette AB (2005) Expedient synthesis of cyclopropane α-amino acids by the catalytic asymmetric cyclopropanation of alkenes using iodonium ylides derived from methyl nitroacetate. J Am Chem Soc 127:18014–18015

    Article  Google Scholar 

  27. Matveeva ED, Proskurnina MV, Zefirov NS (2006) Polyvalent iodine in organic chemistry: recent developments, 2002–2005. Heteroat Chem 17:595–617

    Article  Google Scholar 

  28. Moreau B, Alberico D, Lindsay VNG et al (2012) Catalytic asymmetric synthesis of nitrocyclopropane carboxylates. Tetrahedron 68:3487–3496

    Article  Google Scholar 

  29. Müller P (2004) Asymmetric transfer of carbenes with phenyliodonium ylides. Acc Chem Res 37:243–251

    Article  Google Scholar 

  30. Long J, Yuan Y, Shi Y (2003) Asymmetric Simmons-Smith cyclopropanation of unfunctionalized olefins. J Am Chem Soc 125:13632–13633

    Article  Google Scholar 

  31. Cao ZY, Wang XM, Tan C et al (2013) Highly stereoselective olefin cyclopropanation of diazooxindoles catalyzed by a C 2-symmetric spiroketal bisphosphine/Au(I) complex. J Am Chem Soc 135:8197–8200

    Article  Google Scholar 

  32. Li J, Liao S, Xiong H et al (2012) Highly diastereo- and enantioselective cyclopropanation of 1,2-disubstituted alkenes. Angew Chem Int Ed 51:8838–8841

    Article  Google Scholar 

  33. Xu ZH, Zhu SN, Sun XL et al (2007) Sidearm effects in the enantioselective cyclopropanation of alkenes with aryldiazoacetates catalyzed by trisoxazoline/Cu(I). Chem Commun 19:1960–1962

    Article  Google Scholar 

  34. Desimoni G, Faita G, Jørgensen KA (2006) C 2-symmetric chiral bis(oxazoline) ligands in asymmetric catalysis. Chem Rev 106:3561–3651

    Article  Google Scholar 

  35. Hargaden GC, Guiry PJ (2009) Recent applications of oxazoline-containing ligands in asymmetric catalysis. Chem. Rev 109:2505–2550

    Article  Google Scholar 

  36. Johnson JS, Evans DA (2000) Chiral bis(oxazoline) copper(II) complexes: versatile catalysts for enantioselective cycloaddition, aldol, Michael, and carbonyl ene reactions. Acc Chem Res 33:325–335

    Article  Google Scholar 

  37. Jørgensen KA, Johannsen M, Yao SL et al (1999) Catalytic asymmetric addition reactions of carbonyls. A common catalytic approach. Acc Chem Res 32:605–613

    Article  Google Scholar 

  38. McManus HA, Guiry PJ (2004) Recent developments in the application of oxazoline-containing ligands in asymmetric catalysis. Chem Rev 104:4151–4202

    Article  Google Scholar 

  39. Pfaltz A (1993) Chiral semicorrins and related nitrogen-heterocycles as ligands in asymmetric catalysis. Acc Chem Res 26:339–345

    Article  Google Scholar 

  40. Gade LH, Bellemin-Laponnaz S (2008) Exploiting threefold symmetry in asymmetric catalysis: the case of tris(oxazolinyl)ethanes (“trisox”). Chem Eur J 14:4142–4152

    Article  Google Scholar 

  41. Hargaden GC, Guiry PJ (2009) Recent applications of oxazoline-containing ligands in asymmetric catalysis. Chem Rev 109:2505–2550

    Article  Google Scholar 

  42. Liao SH, Sun XL, Tang Y (2014) Side arm strategy for catalyst design: modifying bisoxazolines for remote control of enantioselection and related. Acc Chem Res 47:2260–2272

    Article  Google Scholar 

  43. Zhou J, Tang Y (2005) The development and application of chiral trisoxazolines in asymmetric catalysis and molecular recognition. Chem Soc Rev 34:664–676

    Article  Google Scholar 

  44. Deng C, Wang LJ, Zhu J et al (2012) A chiral cagelike copper(I) catalyst for the highly enantioselective synthesis of 1,1-cyclopropane diesters. Angew Chem Int Ed 51:11620–11623

    Article  Google Scholar 

  45. Xiong H, Xu H, Liao S et al (2013) Copper-catalyzed highly enantioselective cyclopentannulation of indoles with donor-acceptor cyclopropanes. J Am Chem Soc 135:7851–7854

    Article  Google Scholar 

  46. Zhu SF, Zhou QL (2012) Transition-metal-catalyzed enantioselective heteroatom-hydrogen bond insertion reactions. Acc Chem Res 45:1365–1377

    Article  Google Scholar 

  47. Li W, Liu XH, Hao XY et al (2011) New electrophilic addition of α-diazoesters with ketones for enantioselective C–N bond formation. J Am Chem Soc 133:15268–15271

    Article  Google Scholar 

  48. Li W, Liu XH, Tan F et al (2013) Catalytic asymmetric homologation of α-ketoesters with α-diazoesters: synthesis of succinate derivatives with chiral quaternary centers. Angew Chem Int Ed 52:10883–10886

    Article  Google Scholar 

  49. Zhu Y, Liu XH, Dong SX et al (2014) Asymmetric N–H insertion of secondary and primary anilines under the catalysis of palladium and chiral guanidine derivatives. Angew Chem Int Ed 53:1636–1640

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21421091, 21432011 and 21272250) and the Chinese Academy of Sciences.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Tang.

Additional information

Liang-Wen Feng and Peng Wang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 6854 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, LW., Wang, P., Wang, L. et al. Copper(I)/SaBOX catalyzed highly diastereo- and enantio-selective cyclopropanation of cis-1,2-disubstituted olefins with α-nitrodiazoacetates. Sci. Bull. 60, 210–215 (2015). https://doi.org/10.1007/s11434-014-0708-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0708-5

Keywords

Navigation