Skip to main content
Log in

The mechanism of flow softening in subtransus hot working of two-phase titanium alloy with equiaxed structure

  • Article
  • Mechanical Engineering
  • Published:
Chinese Science Bulletin

Abstract

Understanding the mechanism of high temperature deformation is important for controlling the forming quality of the titanium alloy forgings. In the present work, the flow softening mechanism in subtransus deformation of titanium alloys with equiaxed structure was investigated by interrupted isothermal compression tests. The results show that limited strain hardening followed by continuous flow softening occurs in high temperature deformation of a two-phase TA15 titanium alloy. The flow softening can not be rationalized by dynamic recrystallization. Instead, the increase of mobile dislocations during deformation is an important reason for flow softening. The grain boundaries (including the α-β interfaces) act as an important source for the generation of mobile dislocations. The continuous flow softening results from the significant deformation heterogeneity in subtransus working.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lütjering G, Williams JC (2007) Titanium, 2nd edn. Springer-Verlag, Berlin

    Google Scholar 

  2. Yang H, Fan XG, Sun ZC et al (2011) Recent developments in plastic forming technology of titanium alloys. Sci China Tech Sci 54:490–501

    Article  Google Scholar 

  3. Ding R, Guo ZX, Wilson A (2002) Microstructure evolution of a Ti-6Al-4V alloy during thermomechanical processing. Mater Sci Eng A 327:233–245

    Article  Google Scholar 

  4. Ding R, Guo ZX (2004) Microstructural evolution of a Ti-6Al-4V alloy during β-phase processing: experimental and simulative investigations. Mater Sci Eng A 365:172–179

    Article  Google Scholar 

  5. Bao R, Huang X, Cao C (2006) Deformation behavior and mechanism of Ti-1023 alloy. Trans Nonferrous Met Soc China 16:274–280

    Article  Google Scholar 

  6. Duan YP, Li P, Xue KM et al (2007) Flow behavior and microstructure evolution of TB8 alloy during hot deformation process. Trans Nonferrous Met Soc China 17:1199–1204

    Article  Google Scholar 

  7. Furuhara T, Poorganji B, Abe H et al (2007) Dynamic recovery and recrystallization in titanium alloys by hot deformation. JOM 59:64–67

    Article  Google Scholar 

  8. Momeni A, Abbasi SM (2010) Effect of hot working on flow behavior of Ti-6Al-4V alloy in single phase and two phase regions. Mater Des 31:3599–3604

    Article  Google Scholar 

  9. Zong YY, Shan DB, Lu Y (2006) Microstructural evolution of a Ti-4.5Al-3Mo-1V alloy during hot working. J Mater Sci 41:3753–3760

    Article  Google Scholar 

  10. Sen I, Ramamurty U (2010) High-temperature (1023 K to 1273 K [750 °C to 1000 °C]) plastic deformation behavior of B-modified Ti-6Al-4V alloys: temperature and strain rate effects. Metall Mater Trans A 41:2959–2969

    Article  Google Scholar 

  11. Zhao ZL, Guo HZ, Wang XC et al (2009) Deformation behavior of isothermally forged Ti-5Al-2Sn-2Zr-4Mo-4Cr powder compact. J Mater Process Technol 209:5509–5513

    Article  Google Scholar 

  12. Jackson M, Dashwood R, Christodoulou L et al (2005) The microstructural evolution of near beta alloy Ti-10V-2Fe-3Al during subtransus forging. Metall Mater Trans A 36:1317–1327

    Article  Google Scholar 

  13. Jackson M, Jones NG, Dye D et al (2009) Effect of initial microstructure on plastic flow behaviour during isothermal forging of Ti-10V-2Fe-3Al. Mater Sci Eng A 501:248–254

    Article  Google Scholar 

  14. Semiatin SL, Seetharaman V, Weiss I (1999) Flow behavior and globularization kinetics during hot working of Ti–6Al–4V with a colony alpha microstructure. Mater Sci Eng A 263:257–271

    Article  Google Scholar 

  15. Miller RM, Bieler TR, Semiatin SL (1999) Flow softening during hot working of Ti-6Al-4V with a lamellar colony microstructure. Scripta Mater 40:1387–1393

    Article  Google Scholar 

  16. Semiatin SL, Bieler TR (2001) The effect of alpha platelet thickness on plastic flow during hot working of Ti-6Al-4V with a transformed microstructure. Acta Mater 49:3565–3573

    Article  Google Scholar 

  17. Semiatin SL, Bieler TR (2001) Effect of texture and slip mode on the anisotropy of plastic flow and flow softening during hot working of Ti-6Al-4V. Metall Mater Trans A 32:1787–1799

    Article  Google Scholar 

  18. Jones NG, Jackson M (2011) On mechanism of flow softening in Ti–5Al–5Mo–5V–3Cr. Mater Sci Technol 27:1025–1032

    Article  Google Scholar 

  19. Jones NG, Dashwood RJ, Dye D et al (2009) The flow behavior and microstructural evolution of Ti-5Al-5Mo-5V-3Cr during subtransus isothermal forging. Metall Mater Trans A 40:1944–1954

    Article  Google Scholar 

  20. Song HW, Zhang SH, Cheng M (2010) Subtransus deformation mechanisms of TC11 titanium alloy with lamellar structure. Trans Nonferrous Met Soc China 20:2168–2173

    Article  Google Scholar 

  21. Seshacharyulu T, Medeiros SC, Frazier WG et al (2002) Microstructural mechanisms during hot working of commercial grade Ti-6Al-4V with lamellar starting structure. Mater Sci Eng A 325:112–125

    Article  Google Scholar 

  22. Seshacharyulu T, Medeiros SC, Morgan JT et al (2000) Hot deformation and microstructural damage mechanisms in extra-low interstitial (ELI) grade Ti–6Al–4V. Mater Sci Eng A 279:289–299

    Article  Google Scholar 

  23. Wanjara P, Jahazi M, Monajati H et al (2005) Hot working behavior of near-α alloy IMI834. Mater Sci Eng A 396:50–60

    Article  Google Scholar 

  24. Wanjara P, Jahazi M, Monajati H et al (2006) Influence of thermomechanical processing on microstructural evolution in near-α alloy IMI834. Mater Sci Eng A 416:300–311

    Article  Google Scholar 

  25. Zhao Y, Li B, Zhu Z et al (2010) The high temperature deformation behavior and microstructure of TC21 titanium alloy. Mater Sci Eng A 527:5360–5367

    Article  Google Scholar 

  26. Jones NG, Dashwood RJ, Dye D et al (2008) Thermomechanical processing of Ti-5Al-5Mo-5V-3Cr. Mater Sci Eng A 490:369–377

    Article  Google Scholar 

  27. Majorell A, Srivatsa S, Picu RC (2002) Mechanical behavior of Ti-6Al-4V at high and moderate temperatures—part I: experimental results. Mater Sci Eng A 326:297–305

    Article  Google Scholar 

  28. Seshacharyulu T, Medeiros SC, Frazier WG et al (2000) Hot working of commercial Ti-6Al-4V with an equiaxed α-β microstructure: materials modeling considerations. Mater Sci Eng A 284:184–194

    Article  Google Scholar 

  29. Niu Y, Hou H, Li M et al (2008) High temperature deformation behavior of a near alpha Ti600 titanium alloy. Mater Sci Eng A 492:24–28

    Article  Google Scholar 

  30. Huang LJ, Geng L, Li AB et al (2009) Characteristics of hot compression behavior of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy with an equiaxed microstructure. Mater Sci Eng A 505:136–143

    Article  Google Scholar 

  31. Vo P, Jahazi M, Yue S et al (2007) Flow stress prediction during hot working of near-α titanium alloys. Mater Sci Eng A 447:99–110

    Article  Google Scholar 

  32. Vo P, Jahazi M, Yue S (2008) Recrystallization during thermomechanical processing of IMI834. Metall Mater Trans A 39:2965–2980

    Article  Google Scholar 

  33. Fan XG, Yang H, Gao PF (2011) Deformation behavior and microstructure evolution in multistage hot working of TA15 titanium alloy: on the role of recrystallization. J Mater Sci 46:6018–6028

    Article  Google Scholar 

  34. Zong YY, Shan DB, Xu M et al (2009) Flow softening and microstructural evolution of TC11 titanium alloy during hot deformation. J Mater Process Technol 209:1988–1994

    Article  Google Scholar 

  35. Liu Y, Zhu J, Wang Y et al (2008) Hot compressive deformation behavior and microstructure evolution of Ti-6Al-2Zr-1Mo-1V alloy at 1073 K. Mater Sci Eng A 490:113–116

    Article  Google Scholar 

  36. Jia WJ, Zeng WD, Zhou YG et al (2011) High-temperature deformation behavior of Ti60 titanium alloy. Mater Sci Eng A 528:4068–4074

    Article  Google Scholar 

  37. Sun SD, Zong YY, Shan DB et al (2010) Hot deformation behavior and microstructure evolution of TC4 titanium alloy. Trans Nonferrous Met Soc China 20:2181–2184

    Article  Google Scholar 

  38. Fan XG, Yang H (2011) Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution. Int J Plast 27:1833–1852

    Article  Google Scholar 

  39. Zeng Z, Zhang Y, Jonsson S (2009) Deformation behaviour of commercially pure titanium during simple hot compression. Mater Des 30:3105–3111

    Article  Google Scholar 

  40. Semiatin SL, Bieler TR (2001) Effect of texture changes on flow softening during hot working of Ti-6Al-4V. Metall Mater Trans A 32:1871–1875

    Article  Google Scholar 

  41. Fan XG, Yang H, Gao PF (2013) Prediction of constitutive behavior and microstructure evolution in hot deformation of TA15 titanium alloy. Mater Des 51:34–42

    Article  Google Scholar 

  42. Zahiri SH, Davies CHJ, Hodgson PD (2005) A mechanical approach to quantify dynamic recrystallization in polycrystalline metals. Scripta Mater 52:299–304

    Article  Google Scholar 

  43. Iza-Mendia A, Piñol-Juez A, Urcola JJ et al (1998) Microstructural and mechanical behavior of a duplex stainless steel under hot working conditions. Metall Mater Trans A 29:2975–2986

    Article  Google Scholar 

  44. Piñol-Juez A, Iza-Mendia A, Gutiérrez I (2000) δ/γ interface boundary sliding as a mechanism for strain accommodation during hot deformation in a duplex stainless steel. Metall Mater Trans A 31:1671–1677

    Article  Google Scholar 

  45. Balancin O, Hoffmann WAM, Jonas JJ (2000) Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures. Metall Mater Trans A 31:1353–1364

    Article  Google Scholar 

  46. Júnior AMJ, Reis GS, Balancin O (2011) Influence of the microstructure on the plastic behaviour of duplex stainless steels. Mater Sci Eng A 528:2259–2264

    Article  Google Scholar 

  47. Hull D, Bacon DJ (2011) Introduction to dislocations, 5th edn. Butterworth-Heinemann, Burlington, pp 220–227

    Google Scholar 

  48. Johnston WG (1962) Yield points and delay times in single crystals. J Appl Phys 33:2719–2730

    Google Scholar 

  49. Philippart I, Rack HJ (1998) High temperature dynamic yielding in metastable Ti-6.8Mo-4.5F-1.5Al. Mater Sci Eng A 243:196–200

    Article  Google Scholar 

  50. Semiatin SL, Montheillet F, Shen G et al (2002) Self-consistent modeling of the flow behavior of wrought alpha/beta titanium alloys under isothermal and nonisothermal hot-working conditions. Metall Mater Trans A 33:2719–2727

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (50935007, 51205317), the National Basic Research Program of China (2010CB731701), and 111 Project (B08040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Yang.

About this article

Cite this article

Fan, X., Yang, H. & Gao, P. The mechanism of flow softening in subtransus hot working of two-phase titanium alloy with equiaxed structure. Chin. Sci. Bull. 59, 2859–2867 (2014). https://doi.org/10.1007/s11434-014-0332-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0332-4

Keywords

Navigation