Skip to main content
Log in

Progress in the research of radical anion ligands and their complexes

  • Review
  • Organic Chemistry
  • Published:
Chinese Science Bulletin

Abstract

Recent progress in the research of radical anion ligands and their complexes with metals were summarized in this review. Radical anions were sorted into several types including iminosemiquinonate and iminoquinonate radical, nitroxide radical, heterocycle radical etc. Structural characteristics and properties of the corresponding complexes were introduced. The complexes exhibited novel properties and possibility for applications in organic magnetic materials and transition metal catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Gomberg M (1900) An instance of trivalent carbon: triphenylmethyl. J Am Chem Soc 22:757–771

    Article  Google Scholar 

  2. Kaim W (1987) The transition metal coordination chemistry of anion radicals. Coord Chem Rev 76:187–235

    Article  Google Scholar 

  3. Tsurugi H, Saito T, Tanahashi H et al (2011) Carbon radical generation by d0 tantalum complexes with α-diimine ligands through ligand-centered redox processes. J Am Chem Soc 133:18673–18683

    Article  Google Scholar 

  4. Hitchcock PB, Lappert MF, Protchenko AV (2011) Synthesis and structure of the silylated benzene radical anion salts [K([18]-crown-6){C6H4(SiMe3)2-1,4}] and [K([18]crown-6)(THF)2][C6H2(SiMe3)4-1,2,4,5]. J Organomet Chem 696:2161–2164

    Article  Google Scholar 

  5. Luneau D, Borta A, Chumakov Y et al (2008) Molecular magnets based on two-dimensional Mn(II)–nitronyl nitroxide frameworks in layered structures. Inorg Chim Acta 361:3669–3676

    Article  Google Scholar 

  6. Dang JD, Hamer GK, Georges MK (2012) The synthesis of a verdazyl radical-derived biphenylophane. Tetrahedron Lett 53:4877–4879

    Article  Google Scholar 

  7. Michaelis L, Hill ES (1933) Potentiometric studies on semiquinones. J Am Chem Soc 55:1481–1494

    Article  Google Scholar 

  8. Abakumov GA, Poddel AI, Bubnov MP et al (2005) Manganese(III) and rhenium(II) complexes with bulky 4,6-di-tert-butyl-N-(2,6-di-iso-propylphenyl)-o-iminobenzoquinonato ligands via carbonyls of corresponding metals. Inorg Chim Acta 358:3829–3840

    Article  Google Scholar 

  9. Poddel AI, Cherkasov VK, Fukin GK et al (2004) New four- and five-coordinated complexes of cobalt with sterically hindered o-iminobenzoquinone ligands: synthesis and structure. Inorg Chim Acta 357:3632–3640

    Article  Google Scholar 

  10. Chun H, Verani CN, Chaudhuri P et al (2001) Molecular and electronic structure of octahedral o-aminophenolato and o-iminobenzosemiquinonato complexes of V(V), Cr(III), Fe(III), and Co(III). Experimental determination of oxidation levels of ligands and metal ions. Inorg Chem 40:4157–4166

    Article  Google Scholar 

  11. Lippert CA, Hardcastle KA, Soper JD (2011) Harnessing redox-active ligands for low-barrier radical addition at oxorhenium complexes. Inorg Chem 50:9864–9878

    Article  Google Scholar 

  12. Poddel AI, Bubnov MP, Fukin GK et al (2008) New nitrosyl bis-o-iminobenzosemiquinonato complexes of M(ISQ)2(NO) type. Z Anorg Allg Chem 634:1205–1209

    Article  Google Scholar 

  13. Chaudhuri P, Verani CN, Bill E et al (2001) Electronic structure of bis(o-iminobenzosemiquinonato)metal complexes (Cu, Ni, Pd). The art of establishing physical oxidation states in transition-metal complexes containing radical ligands. J Am Chem Soc 123:2213–2223

    Article  Google Scholar 

  14. Smith AL, Clapp LA, Hardcastle KI et al (2010) Redox-active ligand-mediated Co–Cl bond-forming reactions at reducing square planar cobalt(III) centers. Polyhedron 29:164–169

    Article  Google Scholar 

  15. Kokatam S, Weyhermu1ller T, Bothe E et al (2005) Structural characterization of four members of the electron-transfer series [PdII(L)2)]n (L = o-iminophenolate derivative; n = 2−, 1−, 0, 1+, 2+). Ligand mixed valency in the monocation and monoanion with S1/2 ground states. Inorg Chem 44:3709–3717

    Google Scholar 

  16. Abakumov GA, Cherkasov VK, Druzhkov NO et al (2006) Synthesis, structures, and properties of novel N-aryl-phenanthren-o-iminoquinones. Synth Commun 36:3241–3247

    Article  Google Scholar 

  17. Poddel AI, Smolyaninov IV, Skatovaa AA et al (2008) Diradical bis-o-iminosemiquinonato zinc complex: spectroscopy, magneto-and electrochemistry. Z Anorg Allg Chem 634:1154–1160

    Article  Google Scholar 

  18. Piskunov AV, Mescheryakova IN, Bogomyakov AS et al (2009) Novel indium(III) complexes with sterically hindered o-iminobenzoquinone. Inorg Chem Commun 12:1067–1070

    Article  Google Scholar 

  19. Poddel AI, Vavilina NN, Somov NV et al (2009) Triethylantimony(V) complexes with bidentate O,N–, O,O– and tridentate O,N,O–coordinating o-iminoquinonato/o-quinonato ligands: synthesis, structure and some properties. J Organomet Chem 694:3462–3469

    Article  Google Scholar 

  20. Lado AV, Poddel AI, Piskunov AV et al (2005) Oxidative addition of 3,6-di-tert-butyl-o-benzoquinone and 4,6-di-tert-butyl-N-(2,6-di-iso-propylphenyl)-o-iminobenzoquinone to SnCl2. Inorg Chim Acta 358:4443–4450

    Article  Google Scholar 

  21. Piskunov AV, Mescheryakova IN, Fukin GK et al (2009) New tin(IV) complexes with sterically hindered o-iminobenzoquinone ligand: synthesis and structure. Heteroat Chem 6:332–340

    Article  Google Scholar 

  22. Piskunov AV, Aivaz’yan IA, Poddel AI et al (2008) New germanium complexes containing ligands based on 4,6-di-tert-butyl-N-(2,6-diisopropylphenyl)-o-iminobenzoquinone in different redox states. Eur J Inorg Chem 2008:1435–1444

    Article  Google Scholar 

  23. Blackmore KJ, Ziller JW, Heyduk AF (2005) “Oxidative addition” to a zirconium(IV) redox-active ligand complex. Inorg Chem 44:5559–5561

    Article  Google Scholar 

  24. Fedushkin IL, Khvoinova NM, Baurin AY et al (2004) Divalent germanium compound with a radical-anionic ligand: molecular structures of (dpp-BIAN)-GeCl and its hydrochloration products [(dpp-BIAN)(H)2+[GeCl3] and [{(dpp-BIAN)(H)2+}2(Cl)]+[GeCl3] (dpp-BIAN = 1,2-bis{(2,6-diisopropylphenyl)imino}acenaphthene). Inorg Chem 43:7807–7815

    Article  Google Scholar 

  25. Caneschi A, Gatteschi D, Sessoli R et al (1989) Toward molecular magnets: the metal-radical approach. Acc Chem Res 22:392–398

    Article  Google Scholar 

  26. Caneschi A, Gatteschi D, Rey P (1991) The chemistry and magnetic-properties of metal nitronyl nitroxide complexes. Prog Inorg Chem 39:331–342

    Article  Google Scholar 

  27. Kaizaki S (2003) Spectroscopic implications for magnetic interactions in metal complexes with nitroxide radicals. Chem Soc Jpn 76:673–688

    Article  Google Scholar 

  28. Luneau D, Rey PC (2005) Magnetism of metal-nitroxide compounds involving bis-chelating imidazole and benzimidazole substituted nitronyl nitroxide free radicals. Chem Rev 249:2591–2611

    Google Scholar 

  29. Kaizaki SC (2006) Coordination effects of nitroxide radicals in transition metal and lanthanide complexes. Chem Rev 250:1804–1818

    Google Scholar 

  30. Zhang XH, Yang ST, Wang SP (2008) Rare earth complexes with nitroxide radicals. Chem Ind Eng Prog 20:1073–1089

    Google Scholar 

  31. Fegy K, Luneau D, Rey P et al (1998) Two-dimensional nitroside-based molecular magnetic materials. Angew Chem Int Ed 37:1270–1273

    Article  Google Scholar 

  32. Zhang XH, Wang SP (2002) Nitroxide radical-metal complex magnetism molecular material. Chem Ind Eng Prog 21:2525–2535 (in Chinese)

    Google Scholar 

  33. Kanegawa S, Karasawa S, Maeyama M et al (2008) Crystal design of monometallic single-molecule magnets consisting of cobalt-aminoxyl heterospins. J Am Chem Soc 130:3079–3094

    Article  Google Scholar 

  34. Caneschi A, Chiesi P, David L et al (1993) Crystal structure and magnetic properties of two nitroxide biradicals and of their copper(II) complexes. Inorg Chem 32:1445–1453

    Article  Google Scholar 

  35. Iwamura H, Inoue K, Hayamizu T (1996) High-spin polynitroxide radicals as versatile bridging ligands for transition metal complexes with high ferri/ferromagnetic Tc. Pure Appl Chem 68:243–252

    Article  Google Scholar 

  36. Kahn O, Galy Y, Journaux Y et al (1982) Synthesis, crystal structure and molecular conformations, and magnetic properties of a copper–vanadyl (CuII–VII) heterobinuclear complex: interaction between orthogonal magnetic orbitals. J Am Chem Soc 104:2165–2176

    Article  Google Scholar 

  37. Journaux Y, Kahn O, Zarembowitch J et al (1983) Symmetry of the magnetic orbitals and exchange interaction in copper iron (CuIIFeIII) and copper chromium (CuIICrIII) heterobinuclear complexes. J Am Chem Soc 105:7585–7591

    Article  Google Scholar 

  38. Kahn O (1985) Dinuclear complexes with predictable magnetic properties. Angew Chem Int Ed Engl 24:834–850

    Article  Google Scholar 

  39. Vostrikova KE, Luneau D, Wernsdorfer W et al (2000) A S = 7 ground spin-state cluster built from three shells of different spin carriers ferromagnetically coupled, transition-metal ions and nitroxide free radicals. J Am Chem Soc 122:718–719

    Article  Google Scholar 

  40. Kanegawa S, Karasawa S, Nakano M et al (2004) Magnetic behavior of tetrakis[4-(N-tert-butyl-N-oxylamino)pyridine]bis(isocyanato-N)cobalt(II) in frozen solution. Chem Commun 4:1750–1751

    Article  Google Scholar 

  41. Ishii N, Okamura Y, Chiba S et al (2008) Giant coercivity in a one-dimensional cobalt-radical coordination magnet. J Am Chem Soc 130:24–25

    Article  Google Scholar 

  42. Stumpf HO, Ouahab L, Pei Y et al (2002) Chemistry and physics of a molecular-based magnet containing three spin carriers, with a fully interlocked structure. J Am Chem Soc 116:3866–3874

    Article  Google Scholar 

  43. Cador O, Stumpf HO, Mathoniere C et al (2001) Molecule-based magnets with a fully interlocked three-dimensional structure. Synth Met 122:559–567

    Article  Google Scholar 

  44. Hicks RG, Thompson LK, Barclay TM et al (2000) Strong ferromagnetic and antiferromagnetic exchange coupling between transition metals and coordinated verdazyl radicals. J Am Chem Soc 122:8077–8078

    Article  Google Scholar 

  45. Lu CC, Bill E, Weyhermu T et al (2008) Neutral bis(r-iminopyridine)metal complexes of the first-row transition ions (Cr, Mn, Fe Co, Ni, Zn) and their monocationic analogues: mixed valency involving a redox noninnocent ligand system. J Am Chem Soc 130:3181–3197

    Article  Google Scholar 

  46. Anderson KJ, Gilroy JB, Patrick BO et al (2011) Redox properties of zinc complexes of verdazyl radicals and diradicals. Inorg Chim Acta 374:480–488

    Article  Google Scholar 

  47. Lemaire MT, Barclay TM, Thompson LK et al (2006) Synthesis, structure, and magnetism of a binuclear Co(II) complex of a potentially bis-tridentate verdazyl radical ligand. Inorg Chim Acta 359:2616–2621

    Article  Google Scholar 

  48. Myers TW, Berben LA (2012) A sterically demanding iminopyridine ligand affords redox-active complexes of aluminum(III) and gallium(III). Inorg Chem 51:1480–1488

    Article  Google Scholar 

  49. Jennings M, Preuss KE, Wu J (2006) Synthesis and magnetic properties of a 4-(2′-pyrimidyl)-1,2,3,5-dithiadiazolyl dimanganese complex. Chem Commun 341–343

  50. Hearns NGR, Hesp KD, Jennings M et al (2007) Monodentate N-coordination of a 1,2,3,5-dithiadiazolyl to Mn(II), Co(II) and Ni(II): a new coordination mode. Polyhedron 26:2047–2053

    Article  Google Scholar 

  51. Lu CC, Bill E, Weyhermu T et al (2007) The monoanionic π-radical redox state of α-iminoketones in bis(ligand)metal complexes of nickel and cobalt. Inorg Chem 46:7880–7889

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20972025, U1362110), PetroChina Innovation Foundation (2013D-5006-0503), Scientific Research Foundation for the Returned Overseas Chinese Scholars, Program for New Century Excellent Talents in University (NCET-07-0142), Heilongjiang Province (41417837-8-08016) and Department of Education of Heilongjiang Province (1154H14, 1154G53).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoliang Mao.

About this article

Cite this article

Mao, G., Song, Y., Hao, T. et al. Progress in the research of radical anion ligands and their complexes. Chin. Sci. Bull. 59, 2936–2944 (2014). https://doi.org/10.1007/s11434-014-0326-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0326-2

Keywords

Navigation