Skip to main content
Log in

First-principles calculations of the β′-Mg7Gd precipitate in Mg-Gd binary alloys

  • Article
  • Materials Science
  • Published:
Chinese Science Bulletin

Abstract

The metastable β′ phase is often the most effective hardening precipitate in Mg-Gd based alloys. In this paper, the structural, elastic and electronic properties of the recently identified β′-Mg7Gd precipitate in Mg-Gd binary alloys were investigated using first-principles calculations based on density functional theory. The lattice mismatches between the coherent β′-Mg7Gd precipitate and α-Mg matrix are discussed and used to rationalize the experimentally observed morphology of the precipitate. The mechanical properties were investigated through analysis of the single-crystal elastic constants and the polycrystalline elastic moduli. It is found that β′-Mg7Gd is brittle in nature. Strong covalent bonding in β′-Mg7Gd, as inferred from its electronic structure, further explains its mechanical properties. Our theoretical results show good agreement with experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nie J F, Oh-ishi K, Gao X, et al. Solute segregation and precipitation in a creep-resistant Mg-Gd-Zn alloy. Acta Mater, 2008, 56: 6061–6076

    Article  Google Scholar 

  2. Gao L, Chen R S, Han E H. Microstructure and strengthening mechanisms of a cast Mg-1.48Gd-1.13Y-0.16Zr (at.%) alloy. J Mater Sci, 2009, 44: 4443–4454

    Article  Google Scholar 

  3. Gao X, He S M, Zeng X Q, et al. Microstructure evolution in a Mg-15Gd-0.5Zr (wt.%) alloy during isothermal aging at 250°C. Mater Sci Eng A, 2006, 431: 322–327

    Article  Google Scholar 

  4. Honma T, Ohkubo T, Hono K, et al. Chemistry of nanoscale precipitates in Mg-2.1Gd-0.6Y-0.2Zr (at.%) alloy investigated by the atom probe technique. Mater Sci Eng A, 2005, 395: 301–306

    Article  Google Scholar 

  5. He S M, Zeng X Q, Peng L M, et al. Precipitation in a Mg-10Gd-3Y-0.4Zr (wt.%) alloy during isothermal ageing at 250°C. J Alloys Compd, 2006, 421: 309–313

    Article  Google Scholar 

  6. Honma T, Ohkubo T, Kamado S, et al. Effect of Zn additions on the age-hardening of Mg-2.0Gd-1.2Y-0.2Zr alloys. Acta Mater, 2007, 55: 4137–4150

    Article  Google Scholar 

  7. Yamada K, Hoshikawa H, Maki S, et al. Enhanced age-hardening and formation of plate precipitates in Mg-Gd-Ag alloys. Scrip Mater, 2009, 61: 636–639

    Article  Google Scholar 

  8. Nie J F, Muddle B C. Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy. Acta Mater, 2000, 48: 1691–1703

    Article  Google Scholar 

  9. Nishijima M, Hiraga K, Yamasaki M, et al. Characterization of beta’ phase precipitates in an Mg-5 at% Gd alloy aged in a peak hardness condition, studied by high-angle annular detector dark-field scanning transmission electron microscopy. Mater Trans, 2006, 47: 2109–2112

    Article  Google Scholar 

  10. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  Google Scholar 

  11. Blochl P E. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  12. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775

    Article  Google Scholar 

  13. Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B, 1992, 46: 6671–6687

    Article  Google Scholar 

  14. Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13: 5188–5192

    Article  Google Scholar 

  15. Methfessel M, Paxton A T. High-precision sampling for Brillouin-zone integration in metals. Phys Rev B, 1989, 40: 3616–3621

    Article  Google Scholar 

  16. Blochl P E, Jepsen O, Andersen O K. Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B, 1994, 49: 16223–16233

    Article  Google Scholar 

  17. Nishijima M, Hiraga K. Structural changes of precipitates in an Mg-5 at% Gd alloy studied by transmission electron microscopy. Mater Trans, 2007, 48: 10–15

    Article  Google Scholar 

  18. Gao L, Zhou J, Sun Z M, et al. Electronic origin of the anomalous solid solution hardening of Y and Gd in Mg: A first-principles study. Chinese Sci Bull, 2011, doi: 10.1007/s11434-010-4052-0

  19. Kittel C. Introduction to Solid State Physics. New York: Wiley, 2005

    Google Scholar 

  20. Zhang H, Shang S, Saal J E, et al. Enthalpies of formation of magnesium compounds from first-principles calculations. Intermetallics, 2009, 17: 878–885

    Article  Google Scholar 

  21. Ganeshan S, Shang S L, Wang Y, et al. Effect of alloying elements on the elastic properties of Mg from first-principles calculations. Acta Mater, 2009, 57: 3876–3884

    Article  Google Scholar 

  22. Wang Y, Liu Z K, Chen L Q, et al. First-principles calculations of β″-Mg5Si6/α-Al interfaces. Acta Mater, 2007, 55: 5934–5947

    Article  Google Scholar 

  23. Polmear I J. Magnesium alloys and applications. Mater Sci Technol, 1994, 10: 1–16

    Google Scholar 

  24. Birch F. Finite elastic strain of cubic crystals. Phys Rev, 1947, 71: 809–824

    Article  Google Scholar 

  25. Beckstein O, Klepeis J E, Hart G L W, et al. First-principles elastic constants and electronic structure of α-Pt2Si and PtSi. Phys Rev B, 2001, 63: 134112

    Article  Google Scholar 

  26. Voigt W. Lehrbuch der Kristallphysik. Leipzig: Taubner, 1928

    Google Scholar 

  27. Tang B Y, Wang N, Yu W Y, et al. Theoretical investigation of typical fcc precipitates in Mg-based alloys. Acta Mater, 2008, 56: 3353–3357

    Article  Google Scholar 

  28. Wang N, Yu W Y, Tang B Y, et al. Structural and mechanical properties of Mg17Al12 and Mg24Y5 from first-principles calculations. J Phys D-Appl Phys, 2008, 41: 195408

    Article  Google Scholar 

  29. Hort N, Huang Y D, Kainer K U. Intermetallics in magnesium alloys. Adv Eng Mater, 2006, 8: 235–240

    Article  Google Scholar 

  30. Pugh S F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag, 1954, 45: 823–843

    Google Scholar 

  31. Ganeshan S, Shang S L, Zhang H, et al. Elastic constants of binary Mg compounds from first-principles calculations. Intermetallics, 2009, 17: 313–318

    Article  Google Scholar 

  32. Pettifor D G. Theoretical predictions of structure and related properties of intermetallics. Mater Sci Technol, 1992, 8: 345–349

    Google Scholar 

  33. Born M, Huang K. Dynamical Theory of Crystal Lattices. Oxford: Oxford University Press, 1954

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhou or RongShi Chen.

Additional information

This article is published with open access at Springerlink.com

About this article

Cite this article

Gao, L., Zhou, J., Sun, Z. et al. First-principles calculations of the β′-Mg7Gd precipitate in Mg-Gd binary alloys. Chin. Sci. Bull. 56, 1142–1146 (2011). https://doi.org/10.1007/s11434-010-4061-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-4061-z

Keywords

Navigation