Skip to main content
Log in

First-principles study of the structural and mechanical properties of substitution-doped Mg5Si6

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structural, mechanical, and electronic properties of the metastable β″-Mg5Siphase doped with six elements were calculated by using DFT. Our calculated lattice constants of pristine Mg5Siare in good agreement with the experimental and other theoretical values. It is found that all doping elements preferentially occupy the Mg site in the Mg5Si6 structure. The independent elastic constants of Mg9Si12X (X = Li, Ca, Al, Ge, Cu, Zn) structures are calculated and a series of mechanical moduli (bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio) are determined. The Debye temperature and the anisotropy of doped structures are also investigated. Doping Ge can significantly improve the toughness of Mg9Si12Ge structure, and the doping Li and Zn atoms are beneficial to enhance the strength and hardness of Mg9Si12X structures. Finally, the type of interatomic bonding and charge transfer in the materials are determined by the electronic structure analysis. Electron orbital hybridization will change the types of bonds between nearby atoms and, in turn, the mechanical properties of Mg9Si12X structures.

Graphical abstract

Effect of element doping on mechanical properties of β″-Mg5Si6 phase in Al–Mg–Si alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. X. Xu, Y. Deng, Q. Pan, X. Guo, Enhancing the intergranular corrosion resistance of the Al-Mg-Si alloy with low Zn content by the interrupted aging treatment. Metall. Mater. Trans. A 52(11), 4907–4921 (2021)

    Article  CAS  Google Scholar 

  2. J. Hirsch, Recent development in aluminium for automotive applications. Trans. Nonferr. Met. Soc. 24(7), 1995–2002 (2014)

    Article  CAS  Google Scholar 

  3. H. Li, Z. Yan, L. Cao, Bake hardening behavior and precipitation kinetic of a novel Al-Mg-Si-Cu aluminum alloy for lightweight automotive body. Mater. Sci. Eng. A 728, 88–94 (2018)

    Article  CAS  Google Scholar 

  4. S.N. Khangholi, M. Javidani, A. Maltais, X.G. Chen, Effects of natural aging and pre-aging on the strength and electrical conductivity in Al-Mg-Si AA6201 conductor alloys. Mater. Sci. Eng. A 820, 141538 (2021)

    Article  CAS  Google Scholar 

  5. Y.X. Lai, W. Fan, M.J. Yin, C.L. Wu, J.H. Chen, Structures and formation mechanisms of dislocation-induced precipitates in relation to the age-hardening responses of Al-Mg-Si alloys. J. Mater. Sci. Technol. 41, 127–138 (2020)

    Article  Google Scholar 

  6. Y. Weng, Effect of Ag addition on the precipitation evolution and interfacial segregation for Al-Mg-Si alloy. Acta Mater. 180, 301–316 (2019)

    Article  CAS  Google Scholar 

  7. S.J. Andersen, H.W. Zandbergen, J.C. Jansen, C. Traeholt, U. Tundal, O. Reiso, The crystal structure of the β″ phase in Al-Mg-Si alloys. Acta Mater. 46(9), 3283–3298 (1998)

    Article  CAS  Google Scholar 

  8. Y. Qiu, Y. Kong, S.D. Xiao, Y. Du, Mechanical properties of β″ precipitates containing Al and/or Cu in age hardening Al alloys. J. Mater. Res. 31, 580 (2016)

    Article  CAS  Google Scholar 

  9. H. Zhang, Y. Wang, S.L. Shang, C. Ravib, C. Wolverton, L.Q. Chena, Z.K. Liu, Solvus boundaries of (meta) stable phases in the Al-Mg-Si system: first-principles phonon calculations and thermodynamic modeling. Calphad 34(1), 20–25 (2010)

    Article  CAS  Google Scholar 

  10. C. Ravi, C. Wolverton, First-principles study of crystal structure and stability of Al-Mg-Si-(Cu) precipitates. Acta Mater. 52(14), 4213–4227 (2004)

    Article  CAS  Google Scholar 

  11. C.D. Marioara, S.J. Andersen, J. Jansen, H.W. Zandbergen, Atomic model for GP-zones in A 6082 Al-Mg-Si system. Acta Mater. 49(2), 321–328 (2001)

    Article  CAS  Google Scholar 

  12. D. Zhao, L. Zhou, Y. Kong, A.J. Wang, J. Wang, Y.B. Peng, D. Yong, Y.F. Ouyang, W.Q. Zhang, Structure and thermodynamics of the key precipitated phases in the Al-Mg-Si alloys from first-principles calculations. J. Mater. Sci. 46(24), 7839–7849 (2011)

    Article  CAS  Google Scholar 

  13. M.A. Van Huis, J.H. Chen, H.W. Zandbergen, M.H.F. Sluiter, Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phases in Al-Mg-Si alloys in the late stages of evolution. Acta Mater. 54(11), 2945–2955 (2006)

    Article  Google Scholar 

  14. B. Zhang, L. Wu, B. Wan, J. Zhang, Z. Li, H. Gou, Structural evolution, mechanical properties, and electronic structure of Al-Mg-Si compounds from first principles. J. Mater. Sci. 50(19), 6498–6509 (2015)

    Article  CAS  Google Scholar 

  15. Y. Qiu, Y. Kong, S.D. Xiao, Y. Du, Mechanical properties of β precipitates containing Al and/or Cu in age hardening Al alloys. J. Mater. Res. 31, 850–860 (2016)

    Article  Google Scholar 

  16. T. Saito, E.A. Mørtsell, S. Wenner, C.D. Marioara, S.J. Andersen, J. Friis, K. Matsuda, R. Holmestad, Atomic structures of precipitates in Al-Mg-Si alloys with small additions of other elements. Adv. Eng. Mater. 20(7), 1800125 (2018)

    Article  Google Scholar 

  17. X.Y. Peng, Q. Guo, X.P. Liang, Y. Deng, Y. Gu, G.F. Xu, G.F. Xu, Z.M. Yin, Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al-Zn-Mg-Cu alloy. Mater. Sci. Eng. A 688, 146–154 (2017)

    Article  CAS  Google Scholar 

  18. S.A. Wahid, S.H. Ha, B.H. Kim, Y.O. Yoon, H.K. Lim, S.K. Kim, Influence of Si content on tensile properties and fractography of Al-Mg-Si ternary alloys. J. Nanosci. Nanotechnol. 21, 2005–2009 (2021)

    Article  Google Scholar 

  19. S.C. Wang, M.J. Starink, Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys. Int. Mater. Rev. 50, 193–215 (2005)

    Article  Google Scholar 

  20. Q. Zhao, Z. Qian, X. Cui, Y.Y. Wu, X.F. Liu, Influences of Fe, Si and homogenization on electrical conductivity and mechanical properties of dilute Al-Mg-Si alloy. J. Alloys Compd. 666, 50–57 (2016)

    Article  CAS  Google Scholar 

  21. Y. Wang, Z.K. Liu, L.Q. Chen, C. Wolverton, First-principles calculations of β″-Mg5Si6/α-Al interfaces. Acta Mater. 55(17), 5934–5947 (2007)

    Article  CAS  Google Scholar 

  22. F.J.H. Ehlers, Ab initio interface configuration determination for β″ in Al-Mg-Si: beyond the constraint of a preserved precipitate stoichiometry. Comput. Mater. Sci. 81, 617–629 (2014)

    Article  CAS  Google Scholar 

  23. R. Yu, J. Zhu, H.Q. Ye, Calculations of single-crystal elastic constants made simple. Comput. Phys. Commun. 18, 671–675 (2010)

    Article  Google Scholar 

  24. C. Jiang, M.F. Besser, D.J. Sordelet, B. Gleeson, A combined first-principles and experimental study of the lattice site preference of Pt in B2 NiAl. Acta Mater. 53, 2101–2109 (2005)

    Article  CAS  Google Scholar 

  25. C. Jiang, D.J. Sordelet, B. Gleeson, Site preference of ternary alloying elements in Ni3Al: A first-principles study. Acta Mater. 54, 1147–1154 (2006)

    Article  CAS  Google Scholar 

  26. J.Y. Wang, Y.C. Zhou, Polymorphism of Ti3SiC2 ceramic: first-principles investigations. Phys. Rev. B 69(14), 144108 (2004)

    Article  Google Scholar 

  27. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, London, 1954)

    Google Scholar 

  28. Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76, 054115 (2007)

    Article  Google Scholar 

  29. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65(5), 349 (1952)

    Article  Google Scholar 

  30. E. Schreiber, O.L. Anderson, N. Soga, J.F. Bell, Elastic constants and their measurement. J. Appl. Mech. 42, 747 (1975)

    Article  Google Scholar 

  31. B.K. Li, J.K. Wang, C.H. Zhang, First-principles study on the effects of V, Nb, Cd, Ag, Ge and Sb doped in Al2CuMg phase of Al-Zn-Mg-Cu alloy. Mod. Phys. Lett. B 35(31), 2150478 (2021)

    Article  CAS  Google Scholar 

  32. S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. Ser. 45(7), 823 (1954)

    Article  CAS  Google Scholar 

  33. Y.J. Tian, B. Xu, Z.S. Zhao, Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. 33, 93 (2012)

    Article  CAS  Google Scholar 

  34. Y. Liu, W.C. Hua, D.J. Li, K. Li, H.L. Jin, Y.X. Xu, C.S. Xu, X.Q. Zeng, Mechanical, electronic and thermodynamic properties of C14 type AMg2 (A=Ca, Sr, Ba) compounds from first principles calculations. Comput. Mater. Sci. 97, 9775–9785 (2015)

    Article  Google Scholar 

  35. S.I. Ranganathan, M. Ostoja Starzewski, Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008)

    Article  Google Scholar 

  36. P. Debye, Zur theorie der spezifischen wärmen 344(14), 789–839 (1912)

    Google Scholar 

  37. O.L. Anderson, in Physical Acoustics, vol. III-Part B, ed. by W.P. Mason (Academic Press, New York, 1965)

    Google Scholar 

  38. G. Grimvall, Thermophysical Properties of Materials (North-Holland, Amsterdam, 1986)

    Google Scholar 

  39. B. Chen, B.K. Li, J.K. Wang, C.H. Zhang, DFT investigation on the rare earth effects of Mg8Si3RE (RE=Sc, La, Ce, Yb) compounds. Solid State Commun. 330, 114269 (2021)

    Article  CAS  Google Scholar 

  40. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41(11), 7892–7895 (1990)

    Article  CAS  Google Scholar 

  41. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14(11), 2717–2744 (2002)

    Article  CAS  Google Scholar 

  42. J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electrongas correlation energy. Phys. Rev. B 45(23), 4513244 (1992)

    Article  Google Scholar 

  43. D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980)

    Article  CAS  Google Scholar 

  44. J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981)

    Article  CAS  Google Scholar 

  45. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 16(4), 1748–1749 (1976)

    Google Scholar 

  46. T.H. Fischer, J. Almlof, General methods for geometry and wave function optimization. J. Phys. Chem. 96(24), 9768–9774 (1992)

    Article  CAS  Google Scholar 

  47. G. Henkelman, A. Arnaldsson, H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36(3), 354–360 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this study from the Fundamental Research Funds for the Central Universities (FRF-GF-20-25B). We sincerely thank Dr. Bao Chen for her valuable comments on the writing language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Hui Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, N., Wang, J. & Zhang, CH. First-principles study of the structural and mechanical properties of substitution-doped Mg5Si6. Journal of Materials Research 37, 2996–3008 (2022). https://doi.org/10.1557/s43578-022-00703-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00703-1

Keywords

Navigation