Skip to main content
Log in

Nuclear reprogramming by nuclear transplantation and defined transcription factors

  • Review/Developmental Biology
  • Published:
Chinese Science Bulletin

Abstract

In the past ten years, great breakthroughs have been achieved in the nuclear reprogramming area. It has been demonstrated that highly differentiated somatic cell genome could be reprogrammed to a pluripotent state, which indicates that differentiated cell fate is not irreversible. Nuclear transplantation and induced pluripotent stem (iPS) cell generation are the two major approaches to inducing reprogramming of differentiated somatic cell genome. In the present review, we will summarize the recent progress of nuclear reprogramming and further discuss the potential to generate patient specific pluripotent stem cells from differentiated somatic cells for therapeutic purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilmut I, Schnieke A E, McWhir J, et al. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385(6619): 810–813

    Article  PubMed  CAS  Google Scholar 

  2. Munsie M J, Michalska A E, O’Brien C M, et al. Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr Biol, 2000, 11(16): 989–992

    Article  Google Scholar 

  3. Wakayama T, Tabar V, Rodriguez I, et al. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science, 2001, 292(5517): 740–743

    Article  PubMed  CAS  Google Scholar 

  4. Byrne J A, Pedersen D A, Clepper L L, et al. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature, 2007, 450(7169): 497–502

    Article  PubMed  CAS  Google Scholar 

  5. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663–676

    Article  PubMed  CAS  Google Scholar 

  6. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature, 2007, 448(7151): 313–317

    Article  PubMed  CAS  Google Scholar 

  7. Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007, 448(7151): 318–324

    Article  PubMed  CAS  Google Scholar 

  8. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131(5): 861–72

    Article  PubMed  CAS  Google Scholar 

  9. Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318(5858): 1917–1920

    Article  PubMed  CAS  Google Scholar 

  10. Park I H, Zhao R, West J A, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 2008, 451(7175): 141–146

    Article  PubMed  CAS  Google Scholar 

  11. Briggs R, King T J. Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci USA, 1952, 38(5): 455–463

    Article  PubMed  CAS  Google Scholar 

  12. McGrath J, Solter D. Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science, 1983, 220(4603): 1300–1302

    Article  PubMed  CAS  Google Scholar 

  13. Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292(9): 154–156

    Article  PubMed  CAS  Google Scholar 

  14. Martin G R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 1981, 78: 7634–7638

    Article  PubMed  CAS  Google Scholar 

  15. Thomson J A, Itskovitz-Eldor J, Shapiro S S, et al. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282(5391): 1145–1147

    Article  PubMed  CAS  Google Scholar 

  16. Hochedlinger K, Jaenisch R. Nuclear transplantation, embryonic stem cells, and potential for cell therapy. N Engl J Med, 2003, 349: 275–286

    Article  PubMed  CAS  Google Scholar 

  17. Yang X, Smith S L, Tian X C, et al. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Gent, 2007, 39: 295–302

    Article  CAS  Google Scholar 

  18. Egli D, Rosains J, Birkhoff G, et al. Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature, 2007, 447: 679–685

    Article  PubMed  CAS  Google Scholar 

  19. Greda P, Karasiewicz J, Modlinski J A. Mouse zygotes as recipients in embryo cloning. Reproduction, 2006, 132: 741–748

    Article  PubMed  CAS  Google Scholar 

  20. Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol, 2007, 25(10): 1177–1181

    Article  PubMed  CAS  Google Scholar 

  21. Brambrink T, Foreman R, Welstead G G, et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell, 2008, 2(2): 151–159

    Article  PubMed  CAS  Google Scholar 

  22. Stadtfeld M, Maherali N, Breault D T, et al. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell, 2008, 2(3): 230–240

    Article  PubMed  CAS  Google Scholar 

  23. Mikkelsen T S, Hanna J, Zhang X, Ku M et al. Dissecting direct reprogramming through integrative genomic analysis. Nature, 2008, 454(7200): 49–55

    Article  PubMed  CAS  Google Scholar 

  24. Park I H, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells. Cell, 2008, 134(5): 877–886

    Article  PubMed  CAS  Google Scholar 

  25. Dimos J T, Rodolfa K T, Niakan K K, Weisenthal L M, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008, 321(5893): 1218–1221

    Article  PubMed  CAS  Google Scholar 

  26. Boiani M, Eckardt S, Scholer H R, et al. Oct4 distribution and level in mouse clones: Consequences for pluripotency. Genes Dev, 2002, 16: 1209–1219

    Article  PubMed  CAS  Google Scholar 

  27. Rideout W M3rd, Hochedlinger K, Kyba M, et al. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell, 2002, 109(1): 17–27

    Article  PubMed  CAS  Google Scholar 

  28. Kim J B, Zaehres H, Wu G, et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 2008, 454(7204): 646–650

    Article  PubMed  CAS  Google Scholar 

  29. Shi Y, Do J T, Desponts C, et al. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell, 2008, 2(6): 525–528

    Article  PubMed  CAS  Google Scholar 

  30. Hochedlinger K, Yamada Y, Beard C, et al. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell, 2005, 121: 465–477

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShaoRong Gao.

Additional information

Supported by the National High Technology Research and Development Program of China (Grant No. 2005AA210930)

About this article

Cite this article

Wang, Y., Liu, S., Lai, L. et al. Nuclear reprogramming by nuclear transplantation and defined transcription factors. Chin. Sci. Bull. 54, 14–18 (2009). https://doi.org/10.1007/s11434-008-0576-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0576-y

Keywords

Navigation