Skip to main content
Log in

Delayed resistance to Cucumber mosaic virus mediated by 3’UTR-derived hairpin RNA

  • Articles/Molecular Genetics
  • Published:
Chinese Science Bulletin

Abstract

RNA silencing has been shown to function in the plant antivirus defense response, leading to viral RNA degradation induced by vsiRNA-containing RISC cleavage activity. Cucumber mosaic virus (CMV) 3’UTR sequences share a high conservation of nucleotide sequence and secondary structures that are important for CMV replication. Here, in an attempt to simultaneously target the multiple genomic and subgenomic RNAs of CMV for degradation, CMV 3’UTR were used to design hairpin RNA (hpRNA) to transform tobacco (Xanthi. nc) so as to constitutively produce viral siRNAs. Most of the transgenic plants expressing CMV Q strain (Q-CMV, subgroup II strain) RNA3 3’UTR-derived hpRNA showed delayed resistance to Q-CMV infection and exhibited recovery phenotypes. Compared with Q-CMV-inoculated leaves, the upper leaves showed weak or no disease symptoms and a reduced accumulation level of viral RNAs. Together with transient assays, our results indicate that the 3’UTR-derived siRNAs were biologically active in targeting viral RNA for degradation. Recovery resistance in transgenic plants was also observed against subgroup IB strain SD-CMV infection, indicating a broad-spectrum anti-CMV effect of the 3’UTR-based antiviral silencing. Northern blot assays indicated that there was no strong correlation between the degree of resistance and the accumulation level of 3’UTR-derived siRNAs, suggesting that to target a highly structured RNA, such as the CMV 3’UTR, the quantity of siRNAs may not be the only determinant of silencing efficiency. Target RNA secondary structures may also affect target accessibility, siRNA-containing RISC-target recognition and the consequent antiviral effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldbach R, Bucher E, Prins M. Resistance mechanisms to plant viruses: An overview. Virus Res, 2003, 92: 207–212

    Article  PubMed  CAS  Google Scholar 

  2. Boonrod K, Galetzka D, Nagy P D, et al. Single-chain antibodies against a plant viral RNA-dependent RNA polymerase confer virus resistance. Nat Biotechnol, 2004, 22: 856–862

    Article  PubMed  CAS  Google Scholar 

  3. Watanabe Y, Ogawa T, Takahashi H, et al. Resistance against multiple plant viruses in plants mediated by a double stranded-RNA specific ribonuclease. FEBS Lett, 1995, 372: 165–168

    Article  PubMed  CAS  Google Scholar 

  4. Masuta C, Tanaka H, Uehara K, et al. Broad resistance to plant viruses in transgenic plants conferred by antisense inhibition of a host gene essential in S-adenosylmethionine-dependent transmethylation reactions. Proc Natl Acad Sci USA, 1995, 92: 6117–6121

    Article  PubMed  CAS  Google Scholar 

  5. Lindbo J A, Silva-Rosales L, Proebsting W M, et al. Induction of a Highly Specific Antiviral State in Transgenic Plants: Implications for Regulation of Gene Expression and Virus Resistance. Plant Cell, 1993, 5: 1749–1759

    Article  PubMed  CAS  Google Scholar 

  6. Palukaitis P, Garcia-Arenal F. Cucumoviruses. Adv Virus Res, 2003, 62: 241–323

    Article  PubMed  CAS  Google Scholar 

  7. Baulcombe D. RNA silencing. Diced defence. Nature, 2001, 409: 295–296

    Article  PubMed  CAS  Google Scholar 

  8. Baulcombe D. RNA silencing in plants. Nature, 2004, 431: 356–363

    Article  PubMed  CAS  Google Scholar 

  9. Schramke V, Sheedy D M, Denli A M, et al. RNA-interference-directed chromatin modification coupled to RNA polymerase II transcription. Nature, 2005, 435: 1275–1279

    Article  PubMed  CAS  Google Scholar 

  10. Baulcombe D. RNA silencing. Trends Biochem Sci, 2005, 30: 290–293

    Article  PubMed  CAS  Google Scholar 

  11. Voinnet O. Induction and suppression of RNA silencing: Insights from viral infections. Nat Rev, 2005, 6: 206–220

    Article  CAS  Google Scholar 

  12. Scholthof H B. The Tombusvirus-encoded P19: from irrelevance to elegance. Nat Rev Microbiol, 2006, 4: 405–411

    Article  PubMed  CAS  Google Scholar 

  13. Chellappan P, Vanitharani R, Pita J, et al. Short interfering RNA accumulation correlates with host recovery in DNA virus-infected hosts, and gene silencing targets specific viral sequences. J Virol, 2004, 78: 7465–7477

    Article  PubMed  CAS  Google Scholar 

  14. Molnar A, Csorba T, Lakatos L, et al. Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J Virol, 2005, 79: 7812–7818

    Article  PubMed  CAS  Google Scholar 

  15. Pantaleo V, Szittya G, Burgyan J. Molecular bases of viral RNA targeting by viral siRNA programmed RISC. J Virol, 2007, 81: 3797–3806

    Article  PubMed  CAS  Google Scholar 

  16. Guo H S, Garcia J A. Delayed Resistance to plum pox potyvirus mediated by a mutated RNA replicase GENE: Involvement of a gene-silencing mechanism. Mol Plant Microbe Interact, 1997, 10: 160–170

    Article  CAS  Google Scholar 

  17. Covey S N, Al-Kaff N S, Langara A, et al. Plants combat infection by gene silencing. Nature, 1997, 385: 781–782

    Article  CAS  Google Scholar 

  18. Ratcliff F, Harrison B D, Baulcombe D C. A similarity between viral defense and gene silencing in plants. Science, 1997, 276: 1558–1560

    Article  PubMed  CAS  Google Scholar 

  19. Niu Q W, Lin S S, Reyes J L, et al. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol, 2006, 24: 1420–1428

    Article  PubMed  CAS  Google Scholar 

  20. Qu J, Ye J, Fang R X. Artificial microRNA-mediated virus resistance in plants. J Virol, 2007, 81: 6690–6699

    Article  PubMed  CAS  Google Scholar 

  21. Simon-Mateo C, Garcia J A. MicroRNA-guided processing impairs plum pox virus replication, but the virus readily evolves to escape this silencing mechanism. J Virol, 2006, 80: 2429–2436

    Article  PubMed  CAS  Google Scholar 

  22. Palukaitis P, Roossinck M J, Dietzgen R G, et al. Cucumber mosaic virus. Adv Virus Res, 1992, 41: 281–348

    Article  PubMed  CAS  Google Scholar 

  23. Sugiyama M, Sato H, Karasawa A, et al. Characterization of symptom determinants in two mutants of cucumber mosaic virus Y strain, causing distinct mild green mosaic symptoms in tobacco. Physiol Mol Plant Pathol, 2000, 56: 85–90

    Article  CAS  Google Scholar 

  24. Roossinck M J, Zhang L, Hellwald K H. Rearrangements in the 5′ nontranslated region and phylogenetic analyses of cucumber mosaic virus RNA 3 indicate radial evolution of three subgroups. J Virol, 1999, 73: 6752–6758

    PubMed  CAS  Google Scholar 

  25. Hayes R J, Buck K W. Complete replication of a eukaryotic virus RNA in vitro by a purified RNA-dependent RNA polymerase. Cell, 1990, 63: 363–368

    Article  PubMed  CAS  Google Scholar 

  26. Schwinghamer M W, Symons R H. Translation of the four major RNA species of cucumber mosaic virus in plant and animal cell-free systems and in toad oocytes. Virology, 1977, 79: 88–108

    Article  PubMed  CAS  Google Scholar 

  27. Brigneti G, Voinnet O, Li W X, et al. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J, 1998, 17: 6739–6746

    Article  PubMed  CAS  Google Scholar 

  28. Zhang X, Yuan Y R, Pei Y, et al. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev, 2006, 20: 3255–3268

    Article  PubMed  CAS  Google Scholar 

  29. Guo H S, Ding S W. A viral protein inhibits the long range signaling activity of the gene silencing signal. EMBO J, 2002, 21: 398–407

    Article  PubMed  CAS  Google Scholar 

  30. Dunoyer P, Himber C, Voinnet O. DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat Genet, 2005, 37: 1356–1360

    Article  PubMed  CAS  Google Scholar 

  31. Kwon C S, Chung W I. Differential roles of the 5′ untranslated regions of cucumber mosaic virus RNAs 1, 2, 3 and 4 in translational competition. Virus Res, 2000, 66: 175–185

    Article  PubMed  CAS  Google Scholar 

  32. Rietveld K, Pleij C W, Bosch L. Three-dimensional models of the tRNA-like 3′ termini of some plant viral RNAs. EMBO J, 1983, 2: 1079–1085

    PubMed  CAS  Google Scholar 

  33. Fernandez-Cuartero B, Burgyan J, Aranda M A, et al. Increase in the relative fitness of a plant virus RNA associated with its recombinant nature. Virology, 1994, 203: 373–377

    Article  PubMed  CAS  Google Scholar 

  34. Guo H S, Fei J F, Xie Q, et al. A chemical-regulated inducible RNAi system in plants. Plant J, 2003, 34: 383–392

    Article  PubMed  CAS  Google Scholar 

  35. Ding S W, Rathjen J P, Li W X, et al. Efficient infection from cDNA clones of cucumber mosaic cucumovirus RNAs in a new plasmid vector. J Gen Virol, 1995, 76: 459–464

    Article  PubMed  Google Scholar 

  36. Schob H, Kunz C, Meins F Jr. Silencing of transgenes introduced into leaves by agroinfiltration: A simple, rapid method for investigating sequence requirements for gene silencing. Mol Gen Genet, 1997, 256: 581–585

    Article  PubMed  CAS  Google Scholar 

  37. Llave C, Kasschau K D, Rector M A, et al. Endogenous and silencingssociated small RNAs in plants. Plant Cell, 2002, 14, 1605–1619

    Article  PubMed  CAS  Google Scholar 

  38. Smith N A, Singh S P, Wang M B, et al. Total silencing by intronpliced hairpin RNAs. Nature, 2000, 407: 319–320

    Article  PubMed  CAS  Google Scholar 

  39. Chen Y, Lohuis D, Goldbach R, et al. High frequency induction of RNA-mediated resistance against Cucumber mosaic virus using inverted repeat constructs. Mol Breed, 2004, 14: 215–226

    Article  Google Scholar 

  40. Di Nicola-Negri E, Brunetti A, Tavazza M et al. Hairpin RNA-mediated silencing of plum pox virus P1 and HC-Pro genes for efficient and predictable resistance to the virus. Transgen Res, 2005, 14: 989–994

    Article  Google Scholar 

  41. Kalantidis K, Psaradakis S, Tabler M, et al. The Occurrence of CMV-specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. Mol Plant Microbe Interact, 2002, 15: 826–833

    Article  PubMed  CAS  Google Scholar 

  42. Soards A J, Murphy A M, Palukaitis P, et al. Virulence and differential local and systemic spread of cucumber mosaic virus in tobacco are affected by the CMV 2b protein. Mol Plant Microbe Interact, 2002, 15: 647–653

    Article  PubMed  CAS  Google Scholar 

  43. Wang Y, Tzfira T, Gaba V, et al. Functional analysis of the Cucumber mosaic virus 2b protein: Pathogenicity and nuclear localization. J Gen Virol, 2004, 85: 3135–3147

    Article  PubMed  CAS  Google Scholar 

  44. Ding S W, Li W X, Symons R H. A novel naturally occurring hybrid gene encoded by a plant RNA virus facilitates long distance virus movement. EMBO J, 1995, 14: 5762–5772

    PubMed  CAS  Google Scholar 

  45. Lucy A P, Guo H S, Li W X, et al. Suppression of post-transcriptional gene silencing by a plant viral protein localized in the nucleus. EMBO J, 2000, 19: 1672–1680

    Article  PubMed  CAS  Google Scholar 

  46. Du Q S, Duan C G, Zhang Z H, et al. DCL4 targets Cucumber mosaic virus satellite RNA at novel secondary structures. J Virol, 2007, 81: 9142–9151

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuiShan Guo.

Additional information

Supported by the State Basic Research Development Program of China (Grant No. 2006CB101906) and National Natural Science Foundation of China (Grant No. 30530500)

About this article

Cite this article

Duan, C., Wang, C. & Guo, H. Delayed resistance to Cucumber mosaic virus mediated by 3’UTR-derived hairpin RNA. Chin. Sci. Bull. 53, 3301–3310 (2008). https://doi.org/10.1007/s11434-008-0440-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0440-0

Keywords

Navigation