Skip to main content
Log in

Development and Application of Hydrogen Storage

  • Review Article
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Hydrogen, as a secure, clean, efficient, and available energy source, will be successfully applied to reduce and eliminate greenhouse gas emissions. Hydrogen storage technology, which is one of the key challenges in developing hydrogen economy, will be solved through the unremitting efforts of scientists. The progress on hydrogen storage technology research and recent developments in hydrogen storage materials is reported. Commonly used storage methods, such as high-pressure gas or liquid, cannot satisfy future storage requirement. Hence, relatively advanced storage methods, such as the use of metal-organic framework hydrides and carbon materials, are being developed as promising alternatives. Combining chemical and physical hydrogen storage in certain materials has potential advantages among all storage methods. Intensive research has been conducted on metal hydrides to improve their electrochemical and gaseous hydrogen storage properties, including their hydrogen storage capacity, kinetics, cycle stability, pressure, and thermal response, which are dependent on the composition and structural feature of alloys. Efforts have been exerted on a group of magnesium-based hydrides, as promising candidates for competitive hydrogen storage, to decrease their desorption temperature and enhance their kinetics and cycle life. Further research is necessary to achieve the goal of practical application by adding an appropriate catalyst and through rapid quenching or ball milling. Improving the kinetics and cycle life of complex hydrides is also an important aspect for potential applications of hydrogen energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. P. Jain, Int. J. Hydrogen Energy 34 (2009) 7368–7378.

    Article  Google Scholar 

  2. C. L. Aardahl, S. D. Rassat, Int. J. Hydrogen Energy 34 (2009) 6676–6683.

    Article  Google Scholar 

  3. C. Corgnale, T. Motyka, S. Greenway, J. M. Perez-Berrios, A. Nakano, H. Ito, T. Maeda, J. Alloys Comp. 580 (2013) S406–S409.

    Article  Google Scholar 

  4. H. W. Langmi, J. W. Ren. B. North. M. Mathe, D. Bessarabov, Electrochim. Acta 128 (2014) 368–392.

    Article  Google Scholar 

  5. H. Barthélémy, Int J. Hydrogen Energy 37 (2012) 17364–17372.

    Article  Google Scholar 

  6. R. Bhattacharyya, S. Mohan, Renew. Sust. Energ. Rev. 41 (2015) 872–883.

    Article  Google Scholar 

  7. J. Cermak, L. Kral, Int. J. Hydrogen Energy 37 (2012) 14257–14264.

    Article  Google Scholar 

  8. T. Sun, F. M. Xiao, R. H. Tang, Y. Wang, H. W. Dong, Z. Y. Li, H. Wang, O. Y. Liuzhang, M. Zhu, J. Alloys Comp. 612 (2014) 287–292.

    Article  Google Scholar 

  9. K. Shindo, T. Kondo, Y. Sakurai, J. Alloys Comp. 509 (2011) 4534–4537.

    Article  Google Scholar 

  10. S. J. Yang, H. Jung, T. Kim, C. R. Park, Prog. Nat. Sci. Mater. Int. 22 (2012) 631–638.

    Article  Google Scholar 

  11. D. J. Durbin, C. Malardier-Jugroot, Int. J. Hydrogen Energy 38 (2013) 14595–14617.

    Article  Google Scholar 

  12. B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Int. J. Hydrogen Energy 32 (2007) 1121–1140.

    Article  Google Scholar 

  13. H. T. Hwang, A. Varma, Curr. Opin. Chem. Eng. 5 (2014) 42–48.

    Article  Google Scholar 

  14. J. Y. Zheng, R. Chen, L. Li, L. F. Zhang, Q. Yu, P. Xu, F. M. Kai, G. H. Zhu, X. R. Ye, C. H. Wei, H. D. Lou, Y. J. Zhu, J. Press. Vess. Technol. 22 (2005) 25–28.

    Google Scholar 

  15. Q. Fu, The Entirely Optimal Design of the Lightweight High-pressure Hydrogen Storage Vessel, Zhejiang University, Hangzhou, 2004.

    Google Scholar 

  16. H. C. Zhou, H. D. Ruan, J. Press. Vess. Technol. 21 (2004) 32–36.

    Google Scholar 

  17. B. Y. Huang, C. G. Li, L. K. Shi, G. Z. Qiu, T. Y. Zuo, in: G. Q. Zhou, Z. L. Chen, J. D. Li (Eds.), China Materials Engineering Canon (Volume 4) : Non-ferrous Metal Material Engineering, Chemical Industry Press, Beijing, 2006, pp. 714–750.

    Google Scholar 

  18. D. S. Son, S. H. Chang, Int. J. Hydrogen Engery 37 (2012) 2353–2369.

    Article  Google Scholar 

  19. Lincoln Composites demos 10000 psi Hydrogen Tank, Fuel Cells Bulletin, 2002 (2002) No. 7, 6.

  20. Toyota. [2015-06-20] https://doi.org/www.toyota.co.jp/jpn/tech/index.html.

  21. R. Helmolt, U. Eberle, J. Power Sources 165 (2007) 833–843.

    Article  Google Scholar 

  22. Y. Liu, J. H. Her, A. Dailly, J. R. C. Anibal, D. A. Neumann, C. M. Brown, J. Am. Chem. Soc. 130 (2008) 11813–11818.

    Article  Google Scholar 

  23. B. G. Sun, D. S. Zhang, F. S. Liu, Int. J. Hydrogen Energy 37 (2012) 13088–13091.

    Article  Google Scholar 

  24. P. Chen, M. Zhu, Mater. Today 11 (2008) 36–43.

    Article  Google Scholar 

  25. M. Okumura, A. Ikado, Y. Saito, H. Aoki, T. Miura, Y. Kawakami, Int J. Hydrogen Energy 37 (2012) 10715–10723.

    Article  Google Scholar 

  26. C. K. Lin, Y. C. Chen, Renew Energy 48 (2012) 404–410.

    Article  Google Scholar 

  27. A. Chaise, P. Rango, P. Marty, D. Fruchart, Int. J. Hydrogen Energy 35 (2010) 6311–6322.

    Article  Google Scholar 

  28. E. Hahne, J. Kallweit, Int. J. Hydrogen Energy 23 (1998) 107–114.

    Article  Google Scholar 

  29. M. Bhouri, J. Goyette, B. J. Hardy, D. L. Anton, Int. J. Hydrogen Energy 36 (2011) 6723–6738.

    Article  Google Scholar 

  30. S. Mellouli, H. Dhaou, F. Askri, A. Jemni, S. Ben Nasrallah, Int. J. Hydrogen Energy 34 (2009) 9393–9401.

    Article  Google Scholar 

  31. K. Herbrig, L. Röntzsch, C Pohlmann, T. Weißgärber, B. Kieback, Int J. Hydrogen Energy 38 (2013) 7026–7036.

    Article  Google Scholar 

  32. S. L. Garrison, B. J. Hardy, M. B. Gorbounov, D. A. Tamburello, C. Corgnale, B. A. vanHassel, D. A. Mosher, D. L. Anton, Int. J. Hydrogen Energy 37 (2012) 2850–2861.

    Article  Google Scholar 

  33. C. A. Chung, S. W. Yang, C. Y. Yang, C. W. Hsu, P. Y. Chiu, Appl. Energy 103 (2013) 581–587.

    Article  Google Scholar 

  34. H. Dhaou, A. Souahlia, S. Mellouli, F. Askri, A. Jemni, S. B. Nasrallah, Int. J. Hydrogen Energy 35 (2010) 1674–1680.

    Article  Google Scholar 

  35. H. Wang, A. K. Prasad, S. G. Advani, Int J. Hydrogen Energy 39 (2014) 11035–11046.

    Article  Google Scholar 

  36. S. Garrier, B. Delhomme, P. de Rango, P. Marty, D. Fruchart, S. Miraglia, Int. J. Hydrogen Energy 38 (2013) 9766–9771.

    Article  Google Scholar 

  37. A. Chaise, P. de Rango, Ph. Marty, D. Fruchart, S. Miraglia, R. Olivès, S. Garrier, Int. J. Hydrogen Energy 34 (2009) 8589–8596.

    Article  Google Scholar 

  38. P. L. Zhang, A Metal Hydride Hydrogen Storage Device and Its Preparation Method, China, CN101235937A, 2008.

    Google Scholar 

  39. L. X. Chen, X. Z. Xiao, X. L. Fan, S. K. Peng, C. P. Chen, Zhejiang University, A Hydrogen Storage Device and Its Manufacturing Method, China, CN101413625A, 2008.

  40. R. K. Ahluwalia, T. Q. Hua, J. K. Peng, S. Lasher, K. McKenney, J. Sinha, M. Gardiner, Int. J. Hydrogen Energy 35 (2010) 4171–4184.

    Article  Google Scholar 

  41. S. M. Aceves, F. Espinosa-Loza, E. Ledesma-Orozco, T. O. Ross, A. H. Weisberg, T. C. Brunner, O. Kircher, Int J. Hydrogen Energy 35 (2010) 1219–1226.

    Article  Google Scholar 

  42. N. Takeichi, H. Senoh, T. Yokota, H. Tsuruta, K. Hamada, H. T. Takeshita, H. Tanaka, T. kiyobayashi, T. Takano, N. Kuriyama, Int. J. Hydrogen Energy 28 (2003) 1121–1129.

    Google Scholar 

  43. T. Matsunaga, M. Kon, K. Washio, T. Shinozawa, M. Ishikiriyama, Int J. Hydrogen Energy 34 (2009) 1458–1462.

    Article  Google Scholar 

  44. M. Tousignant, J. Huot, J. Alloys Comp. 595 (2014) 22–27.

    Article  Google Scholar 

  45. K. Giza, Intermetallics 34 (2013) 128–131.

    Article  Google Scholar 

  46. W. Q. Jiang, C. S. Qin, R. R. Zhu, J. Guo, J. Alloys Comp. 565 (2013) 37–43.

    Article  Google Scholar 

  47. Y. H. Zhang, H. P. Ren, Y. Cai, T. Yang, G. F. Zhang, D. L. Zhao, Trans. Nonferrous Met. Soc. China 24 (2014) 406–414.

    Article  Google Scholar 

  48. T. T. Zhai, T. Yang, Z. M. Yuan, Y. H. Zhang, Int. J. Hydrogen Energy 39 (2014) 14282–14287.

    Article  Google Scholar 

  49. T. Yang, T. T. Zhai, Z. M. Yuan, W. G. Bu, S. Xu, Y. H. Zhang. J. Alloys Comp. 617 (2014) 29–33.

    Article  Google Scholar 

  50. M. Y. Song, Y. J. Kwak, S. H. Lee, H. R. Park, Bull. Mater. Sci. 37 (2014) 831–835.

    Article  Google Scholar 

  51. W. Y. Li, C. S. Li, H. Ma, J. Chen, J. Am. Chem. Soc. 129 (2007) 6710–6711.

    Article  Google Scholar 

  52. F. Y. Cheng, Z. L. Tao, J. Liang, J. Chen, Chem. Commun. 48 (2012) 7334–7343.

    Article  Google Scholar 

  53. P. Lv, Z. Wang, H. Zhou, J. Deng, Q. Yao, H. Zhang, Mater. Sci. Technol. 30 (2014) 176–182.

    Article  Google Scholar 

  54. Y. H. Zhang, H. T. Wang, T. T. Zhai, T. Yang, Y. Qi, D. L. Zhao, Int. J. Hydrogen Energy 39 (2014) 3790–3798.

    Article  Google Scholar 

  55. Q. Wan, P. Li, T. Wang, X. Qu, F. Zhai, A. A. Volinsky, P. J. Logan, Bull. Mater. Sci. 37 (2014) 77–82.

    Article  Google Scholar 

  56. Y. H. Jia, S. M. Han, W. Zhang, X. Zhao, P. F. Sun, Y. Q. Liu, J. S. Wang, Int. J. Hydrogen Energy 38 (2013) 2352–2356.

    Article  Google Scholar 

  57. K. Jiang, X. Z. Xiao, L. X. Chen, L. Y. Han, S. Q. Li, H. W. Ge, Q. D. Wang, J. Alloys Comp. 539 (2012) 103–107.

    Article  Google Scholar 

  58. H. W. Li, E. Akiba, S. Orimo, J. Alloys Comp. 580 (2013) S292–S295.

    Article  Google Scholar 

  59. X. C. Wu, X. H. Wang, G. Z. Cao, S. Q. Li, H. W. Ge, L. X. Chen, M. Yan, J. Alloys Comp. 517 (2012) 127–131.

    Article  Google Scholar 

  60. B. Peng, J. Chen, Energy Environ. Sci. 1 (2008) 479–483

    Google Scholar 

  61. A. Minoda, S. Oshima, H. Iki, E. Akiba, J. Alloys Comp. 580 (2013) S301–S304.

    Article  Google Scholar 

  62. A. Minoda, S. Oshima, H. Iki, E. Akiba, J. Alloys Comp. 606 (2014) 112–116.

    Article  Google Scholar 

  63. F. Suarez-Garcia, E. Vilaplana-Ortego, M Kunowsky, M. Kimura, A. Linares-Solano, Int. J. Hydrogen Energy 34 (2009) 9141–9150.

    Article  Google Scholar 

  64. Y. Suttisawat, P. Rangsunvigit, B. Kitiyanan, M Williams, P. Ndungu, M V. Lototskyy, A. Nechaev, V. Linkov, S. Kiprathipanja, Int J. Hydrogen Energy 34 (2009) 6669–6675.

    Article  Google Scholar 

  65. T. Spassov, V. Rangelova, H. Chanev, S. Stoyanov, O. Petrov, Scripta Mater. 58 (2008) 118–121.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-huan Zhang.

Additional information

Foundation Item: Item Sponsored by National Natural Science Foundation of China (51161015, 51371094)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Yh., Jia, Zc., Yuan, Zm. et al. Development and Application of Hydrogen Storage. J. Iron Steel Res. Int. 22, 757–770 (2015). https://doi.org/10.1016/S1006-706X(15)30069-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(15)30069-8

Key words

Navigation