Skip to main content
Log in

A perspective on fish gonad manipulation for biotechnical applications

  • Reviews
  • Published:
Chinese Science Bulletin

Abstract

The gonad is an essential organ for generating sperm and ova in vertebrates. This review describes several pilot studies on gonad gene manipulation and development in fish. With antisense RNA techniques, we suppressed the gonad development, and thus the fertility, of an antisense gonadotropin-releasing hormone (sGnRH) transgenic common carp. Then, using a tissue-specific exogenous gene excision strategy with sexual compensation, we knocked out the gonad-specific transgene. Under the control of the rainbow trout protamine promoter, the transgenic fish expressed the reporter gene eGFP specifically in the spermary. These results indicate that the fish gonad is a new model organ that can improve contemporary biotechnology experiments. Herein we discuss the potential of fish gonad manipulation for resolving important biosafety problems regarding transgenic fish generation and producing the new transgenic animal bioreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, Z., Li, G., He, L. et al., Novel gene transfer into the fertilized eggs of goldfish (Carassius auratus L. 1758). Z. Angew. Ichthyol., 1985, 1: 31–34.

    Article  CAS  Google Scholar 

  2. Wang, R., Zhang, P., Gong, Z. et al., Expression of the antifreeze protein gene in transgenic goldfish (Carassius auratus) and its implication in cold adaptation, Mol. Mar. Biol. Biotechnol., 1995, 4(1): 20–26.

    PubMed  CAS  Google Scholar 

  3. Maclean, N., Laight, R. J., Transgenic fish: an evaluation of benefits and risks, Fish and Fisheries, 2000, 1: 146–172.

    Article  Google Scholar 

  4. Nam, Y. K., Noh, J. K., Cho, Y. S. et al., Dramatically accelerated growth and extraordinary gigantism of transgenic mud loach, Misgurnus mizolepis, Transgenic Res., 2001, 10(4): 353–362.

    Article  PubMed  CAS  Google Scholar 

  5. Zhong, J., Wang, Y., Zhu, Z., Introduction of the human lactoferrin gene into grass carp (Ctenopharyngodon idellus) to increase resistance against GCH virus, Aquaculture, 2002, 214: 93–101.

    Article  CAS  Google Scholar 

  6. Mao, W., Wang, Y., Wang, W. et al., Enhanced resistance to Aeromonas hydrophila infection and enhanced phagocytic activities in human lactoferrin-transgenic grass carp (Ctenopharyngodon idellus), Aquaculture, 2004, 242: 93–103.

    Article  CAS  Google Scholar 

  7. Rudolph, N. S., Biopharmaccutical production in transgenic livestock, Trends Biotechnol., 1999, 17, 367–374.

    Article  PubMed  CAS  Google Scholar 

  8. Morita, T., Yoshizaki, G., Kobayashi, M. et al., Fish eggs as bioreactors: The production of bioactive luteinizing hormone in transgenic trout embryos, Transgenic Res., 2004, 13: 551–557.

    Article  PubMed  CAS  Google Scholar 

  9. Hwang, G., Müller, F., Rahman, M. et al., Fish as Bioreactors: Transgene expression of human coagulation factor VII in fish embryos, Mar. Biotechnol., 2004, 6: 485–492.

    Article  PubMed  CAS  Google Scholar 

  10. Zhu, Z., Xu, K., Xie, Y. et al., A model of transgenic fish, Scientia Sinica B (in Chinese), 1989, 2: 147–155.

    Google Scholar 

  11. Wang, Y., Hu, W., Wu, G. et al., Genetic analysis of “All-fish” growth hormone gene transferred Yellow River carp (Cyprinus carpio. L) and its F1 generation, Chinese Science Bulletin, 2001, 46: 1174–1177.

    CAS  Google Scholar 

  12. Zhang, F., Wang, Y., Hu, W. et al., Physiological and pathological analysis of mice fed with “all-fish” gene transferred Yellow River carp, High Technol. Lett. (in Chinese), 2000, 7: 12–17.

    Google Scholar 

  13. Knibb, W., Risk from genetically engineered and modified marine fish, Transgenic Res., 1997, 6: 59–67.

    Article  CAS  Google Scholar 

  14. Muir, W. M., Howard, R. D., Possible ecological risks of transgenic organism release when transgenes affect mating success: Sexual selection and the Trojan gene hypothesis, Proc. Natl. Acad. Sci. USA., 1999, 96(24): 13853–13856.

    Article  PubMed  CAS  Google Scholar 

  15. Muir, W. M., Howard, R. D., Assessment of possible ecological risks and hazards of transgenic fish with implications for other sexually reproducing organisms, Transgenic Res., 2002, 1(2):101–114.

    Article  Google Scholar 

  16. Stokstad, E., Engineered fish: Friend or foe of the environment? Science, 2002, 297: 1797–1798.

    Article  PubMed  CAS  Google Scholar 

  17. Gage, M. J. G., Stockly, P., Parker, G. A., Effects of alternative male mating strategies on characteristics of sperm production in the Atlantic salmon (Salmo salar): Theoretical and empirical investigations. Philos. Trans. R. Soc. Lond. Ser. B, 1996, 350: 391–399.

    Article  Google Scholar 

  18. Suresh, A. V., Sreenan, R. J., Biochemical and morphological correlates of growth in diploid and triploid rainbow trout, J. Fish Biol., 1998, 52: 588–599.

    Article  Google Scholar 

  19. Razak, S. A., Hwang, G., Rahman, M. A. et al., Growth performance and gonadal development of growth enhanced transgenic tilapia Oreochromis niloticus following heat-shock-induced triploidy, Mar. Biotechnol., 1999, 1: 533–544.

    Article  PubMed  Google Scholar 

  20. Liu, S. J., Liu, Y., Zhou, G. et al., The formation of tetraploid stocks of red crucian carp × common carp hybrids as an effect of interspecific hybridization, Aquaculture, 2001, 192(3-4): 171–186.

    Article  Google Scholar 

  21. Sun, Y., Liu, S., Zhang, C. et al., The chromosome number and gonadal structure of f9-f11 allotetraploid crucian carp, Acta Genetica Sinica (in Chinese), 2003, 30(5): 414–418.

    CAS  Google Scholar 

  22. Fernald, R. D., White, R. B., Gonadotropin-releasing hormone genes: Phylogeny, structure and functions, Front. Neuroendocrinol., 1999, 20: 224–240.

    Article  PubMed  CAS  Google Scholar 

  23. Mason, A. J., Hayflick, J. S., Zoeller, R. T. et al., A deletion truncating the gonadotropin-releasing hormone gene is responsible for hypogonadism in the hpg mouse, Science, 1986, 234: 1366–1371.

    Article  PubMed  CAS  Google Scholar 

  24. Mason, A. J., Pitts, S. L., Nikolics, K. et al., The hypogonadal mouse: Reproductive functions restored by gene therapy, Science, 1986, 234: 1372–1378.

    Article  PubMed  CAS  Google Scholar 

  25. Singh, J., O’Neill, C., Handelsman, D. J., Induction of spermatiogenesis by androgens in gonadotropin-deficient (hpg) mice, Endocrinology, 1995, 136: 5311–5321.

    Article  PubMed  CAS  Google Scholar 

  26. Oeller, P. W., Lu, M. W., Tanlor, P. L. et al., Reversible inhibition of tomato fruit senescence by antisense RNA. Science, 1991, 254: 437–439.

    Article  PubMed  CAS  Google Scholar 

  27. Uzbekova, S., Chyb, J., Ferriere, F. et al., Transgenic rainbow trout expressed sGnRH-antisense RNA under the control of sGnRH promoter of Atlantic salmon, J. Mol. Endocrinol., 2000, 25: 337–350.

    Article  PubMed  CAS  Google Scholar 

  28. Li, S., Hu, W., Wang, Y. et al., Cloning and expression analysis in mature individuals of two chicken type-II GnRH (cGnRH-II) genes in common carp (Cyprinus carpio), Science in China, Ser. C, 2004, 47(4): 349–358.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Hu, W., Wang, Y. & Zhu, Z. A perspective on fish gonad manipulation for biotechnical applications. Chin. Sci. Bull. 51, 1–6 (2006). https://doi.org/10.1007/s11434-005-1055-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-005-1055-3

Keywords

Navigation