Skip to main content
Log in

Anisotropic interfacial superconductivity induced at point contacts on topological semimetal grey arsenic

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The origin of superconductivity observed at the point contact between the normal metal tip and the topological material remains uncertain due to the potential presence of superconducting elements or allotropes impurities. It is imperative to seek out a topological material entirely free of superconducting impurities and induce superconductivity between it and normal tips to verify the source of the induced superconductivity. Here, we report the observation of superconductivity up to 9 K induced at point contacts between normal metal tips and the topological material grey arsenic, which is free of superconductivity. The determined temperature dependencies of superconducting gaps Δ(T) deviate from the Bardeen-Cooper-Schrieffer (BCS) superconductivity law, exhibiting abnormal behavior. Furthermore, the highly anisotropic upper critical field Hc2(T) suggests the anisotropy of the projected interfacial Fermi surface. By tuning the junction resistance, we obtained a negative correlation between the superconducting gap A and the effective barrier height Z, which validates the interfacial coupling strength as a key factor in the observed tip-induced superconductivity. These experimental results provide guidance for the relevant theory about tip-induced superconductivity on topological materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005), arXiv: cond-mat/0411737.

    Article  ADS  Google Scholar 

  2. M. Leijnse, and K. Flensberg, Semicond. Sci. Technol. 27, 124003 (2012), arXiv: 1206.1736.

    Article  ADS  Google Scholar 

  3. J. Alicea, Rep. Prog. Phys. 75, 076501 (2012), arXiv: 1202.1293.

    Article  ADS  Google Scholar 

  4. M. Sato, and Y. Ando, Rep. Prog. Phys. 80, 076501 (2017), arXiv: 1608.03395.

    Article  ADS  Google Scholar 

  5. D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature 460, 1101 (2009), arXiv: 1001.1590.

    Article  ADS  Google Scholar 

  6. D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Phys. Rev. Lett. 103, 146401 (2009).

    Article  ADS  Google Scholar 

  7. T. Zhang, P. Cheng, X. Chen, J. F. Jia, X. Ma, K. He, L. Wang, H. Zhang, X. Dai, Z. Fang, X. Xie, and Q. K. Xue, Phys. Rev. Lett. 103, 266803 (2009), arXiv: 0908.4136.

    Article  ADS  Google Scholar 

  8. Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J. Cava, Phys. Rev. Lett. 104, 057001 (2010), arXiv: 0909.2890.

    Article  ADS  Google Scholar 

  9. J. P. Xu, M. X. Wang, Z. L. Liu, J. F. Ge, X. Yang, C. Liu, Z. A. Xu, D. Guan, C. L. Gao, D. Qian, Y. Liu, Q. H. Wang, F. C. Zhang, Q. K. Xue, and J. F. Jia, Phys. Rev. Lett. 114, 017001 (2015), arXiv: 1312.7110.

    Article  ADS  Google Scholar 

  10. H. H. Sun, K. W. Zhang, L. H. Hu, C. Li, G. Y. Wang, H. Y. Ma, Z. A. Xu, C. L. Gao, D. D. Guan, Y. Y. Li, C. Liu, D. Qian, Y. Zhou, L. Fu, S. C. Li, F. C. Zhang, and J. F. Jia, Phys. Rev. Lett. 116, 257003 (2016), arXiv: 1603.02549.

    Article  ADS  Google Scholar 

  11. D. Wang, L. Kong, P. Fan, H. Chen, S. Zhu, W. Liu, L. Cao, Y. Sun, S. Du, J. Schneeloch, R. Zhong, G. Gu, L. Fu, H. Ding, and H. J. Gao, Science 362, 333 (2018), arXiv: 1706.06074.

    Article  ADS  Google Scholar 

  12. D. Zhang, J. Wang, A. M. Dasilva, J. S. Lee, H. R. Gutierrez, M. H. W. Chan, J. Jain, and N. Samarth, Phys. Rev. B 84, 165120 (2011), arXiv: 1106.3605.

    Article  ADS  Google Scholar 

  13. L. Aggarwal, A. Gaurav, G. S. Thakur, Z. Haque, A. K. Ganguli, and G. Sheet, Nat. Mater. 15, 32 (2016), arXiv: 1410.2072.

    Article  ADS  Google Scholar 

  14. H. Wang, H. Wang, H. Liu, H. Lu, W. Yang, S. Jia, X. J. Liu, X. C. Xie, J. Wei, and J. Wang, Nat. Mater. 15, 38 (2016), arXiv: 1501.00418.

    Article  ADS  Google Scholar 

  15. S. Das, L. Aggarwal, S. Roychowdhury, M. Aslam, S. Gayen, K. Biswas, and G. Sheet, Appl. Phys. Lett. 109, 132601 (2016), arXiv: 1607.01609.

    Article  ADS  Google Scholar 

  16. H. Wang, H. Wang, Y. Chen, J. Luo, Z. Yuan, J. Liu, Y. Wang, S. Jia, X. J. Liu, J. Wei, and J. Wang, Sci. Bull. 62, 425 (2017).

    Article  Google Scholar 

  17. L. Aggarwal, S. Gayen, S. Das, R. Kumar, V. Süß, C. Felser, C. Shekhar, and G. Sheet, Nat. Commun. 8, 13974 (2017), arXiv: 1607.05131.

    Article  ADS  Google Scholar 

  18. H. Wang, L. Ma, and J. Wang, Sci. Bull. 63, 1141 (2018).

    Article  Google Scholar 

  19. X. Y. Hou, Y. D. Gu, S. J. Li, L. X. Zhao, W. L. Zhu, Z. Wang, M. D. Zhang, F. Zhang, L. Zhang, H. Zi, Y. W. Wu, H. X. Yang, Z. A. Ren, P. Zhang, G. F. Chen, N. Hao, and L. Shan, Phys. Rev. B 101, 134503 (2020).

    Article  ADS  Google Scholar 

  20. H. Wang, Y. He, Y. Liu, Z. Yuan, S. Jia, L. Ma, X. J. Liu, and J. Wang, Sci. Bull. 65, 21 (2020).

    Article  Google Scholar 

  21. J. Luo, Y. Li, J. Li, T. Hashimoto, T. Kawakami, H. Lu, S. Jia, M. Sato, and J. Wang, Phys. Rev. Mater. 3, 124201 (2019).

    Article  Google Scholar 

  22. X. Hou, Z. Wang, Y. Gu, J. He, D. Chen, W. Zhu, M. Zhang, F. Zhang, Y. Xu, S. Zhang, H. Yang, Z. Ren, H. Weng, N. Hao, W. Lv, J. Hu, G. Chen, and L. Shan, Phys. Rev. B 100, 235109 (2019), arXiv: 1811.12213.

    Article  ADS  Google Scholar 

  23. L. Aggarwal, C. K. Singh, M. Aslam, R. Singha, A. Pariari, S. Gayen, M. Kabir, P. Mandal, and G. Sheet, J. Phys.-Condens. Matter 31, 485707 (2019), arXiv: 1802.07993.

    Article  Google Scholar 

  24. M. D. Zhang, X. Y. Hou, Q. Wang, Y. Y. Wang, L. X. Zhao, Z. Wang, Y. D. Gu, F. Zhang, T. L. Xia, Z. A. Ren, G. F. Chen, N. Hao, and L. Shan, Phys. Rev. B 102, 085139 (2020).

    Article  ADS  Google Scholar 

  25. M. D. Zhang, S. Xu, X. Y. Hou, Y. D. Gu, F. Zhang, T. L. Xia, Z. A. Ren, G. F. Chen, N. Hao, and L. Shan, Chin. Phys. B 30, 017304 (2021).

    Article  ADS  Google Scholar 

  26. P. Kumar, Sudesh, and S. Patnaik, AIP Conf. Proc. 1731, 140063 (2016).

    Article  Google Scholar 

  27. M. Baenitz, M. Schmidt, V. Suess, C. Felser, and K. Lüders, J. Phys.-Conf. Ser. 1293, 012002 (2019).

    Article  Google Scholar 

  28. M. D. Bachmann, N. Nair, F. Flicker, R. Ilan, T. Meng, N. J. Ghimire, E. D. Bauer, F. Ronning, J. G. Analytis, and P. J. W. Moll, Sci. Adv. 3, e1602983 (2017), arXiv: 1703.08024.

    Article  ADS  Google Scholar 

  29. M. R. van Delft, S. Pezzini, M. König, P. Tinnemans, N. E. Hussey, and S. Wiedmann, Crystals 10, 288 (2020).

    Article  Google Scholar 

  30. B. T. Matthias, and J. K. Hulm, Phys. Rev. 87, 799 (1952).

    Article  ADS  Google Scholar 

  31. R. H. Willens, and E. Buehler, Appl. Phys. Lett. 7, 25 (1965).

    Article  ADS  Google Scholar 

  32. R. H. Willens, E. Buehler, and B. T. Matthias, Phys. Rev. 159, 327 (1967).

    Article  ADS  Google Scholar 

  33. P. Zhang, J. Z. Ma, Y. Ishida, L. X. Zhao, Q. N. Xu, B. Q. Lv, K. Yaji, G. F. Chen, H. M. Weng, X. Dai, Z. Fang, X. Q. Chen, L. Fu, T. Qian, H. Ding, and S. Shin, Phys. Rev. Lett. 118, 046802 (2017), arXiv: 1608.03029.

    Article  ADS  Google Scholar 

  34. L. Zhao, Q. Xu, X. Wang, J. He, J. Li, H. Yang, Y. Long, D. Chen, H. Liang, C. Li, M. Xue, J. Li, Z. Ren, L. Lu, H. Weng, Z. Fang, X. Dai, and G. Chen, Phys. Rev. B 95, 115119 (2017).

    Article  ADS  Google Scholar 

  35. D. Daghero, and R. S. Gonnelli, Supercond. Sci. Technol. 23, 043001 (2010), arXiv: 0912.4858.

    Article  ADS  Google Scholar 

  36. Y. Bugoslavsky, Y. Miyoshi, G. K. Perkins, A. D. Caplin, L. F. Cohen, A. V. Pogrebnyakov, and X. X. Xi, Phys. Rev. B 69, 132508 (2004), arXiv: cond-mat/0307540.

    Article  ADS  Google Scholar 

  37. Y. Miyoshi, Y. Bugoslavsky, and L. F. Cohen, Phys. Rev. B 72, 012502 (2005), arXiv: cond-mat/0410264.

    Article  ADS  Google Scholar 

  38. L. Shan, Y. Huang, C. Ren, and H. H. Wen, Phys. Rev. B 73, 134508 (2006).

    Article  ADS  Google Scholar 

  39. G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).

    Article  ADS  Google Scholar 

  40. T. P. Orlando, E. J. McNiff Jr., S. Foner, and M. R. Beasley, Phys. Rev. B 19, 4545 (1979).

    Article  ADS  Google Scholar 

  41. R. A. Matula, J. Phys. Chem. Ref. Data 8, 1147 (1979).

    Article  ADS  Google Scholar 

  42. L. Shan, H. J. Tao, H. Gao, Z. Z. Li, Z. A. Ren, G. C. Che, and H. H. Wen, Phys. Rev. B 68, 144510 (2003).

    Article  ADS  Google Scholar 

  43. Y. Tanaka, and S. Kashiwaya, Phys. Rev. Lett. 74, 3451 (1995).

    Article  ADS  Google Scholar 

  44. G. Sheet, S. Mukhopadhyay, and P. Raychaudhuri, Phys. Rev. B 69, 134507 (2004), arXiv: cond-mat/0311648.

    Article  ADS  Google Scholar 

  45. H. Kawamura, and J. Wittig, Physica B+C 135, 239 (1985).

    Article  ADS  Google Scholar 

  46. H. J. Beister, K. Strössner, and K. Syassen, Phys. Rev. B 41, 5535 (1990).

    Article  ADS  Google Scholar 

  47. A. L. Chen, S. P. Lewis, Z. Su, P. Y. Yu, and M. L. Cohen, Phys. Rev. B 46, 5523 (1992).

    Article  ADS  Google Scholar 

  48. A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).

    Article  ADS  Google Scholar 

  49. B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962).

    Article  ADS  Google Scholar 

  50. M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1975).

    Google Scholar 

  51. P. Hohenberg, and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  ADS  Google Scholar 

  52. W. Kohn, and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  ADS  Google Scholar 

  53. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  54. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.-Condens. Matter 21, 395502 (2009), arXiv: 0906.2569.

    Article  Google Scholar 

  55. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  56. Q. S. Wu, S. N. Zhang, H. F. Song, M. Troyer, and A. A. Soluyanov, Comput. Phys. Commun. 224, 405 (2018), arXiv: 1703.07789.

    Article  ADS  Google Scholar 

  57. W. Zhu, X. Hou, J. Li, Y. Huang, S. Zhang, J. He, D. Chen, Y. Wang, Q. Dong, M. Zhang, H. Yang, Z. Ren, J. Hu, L. Shan, and G. Chen, Adv. Mater. 32, 1907970 (2020).

    Article  Google Scholar 

  58. W. Zhu, Y. Wang, J. Li, Y. Huang, Q. Dong, X. Hou, L. Zhao, S. Zhang, H. Yang, Z. Ren, L. Shan, and G. Chen, Adv. Quantum Tech. 3, 2000020 (2020).

    Article  Google Scholar 

  59. D. Campi, M. Bernasconi, and G. Benedek, Phys. Rev. B 86, 245403 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gen-Fu Chen, Ning Hao or Lei Shan.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Key R&D Program of China (Grant Nos. 2022YFA1403203, 2017YFA0302904, 2017YFA0303201, 2018YFA0305602, and 2016YFA0300604), the National Natural Science Foundation of China (Grant Nos. 12074002, 11574372, 11674331, 11804379, 11874417, and 92265104), the National Basic Research Program of China (Grant No. 2015CB921303), the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant Nos. XDB07020300, XDB07020100, and XDB33030100), the Recruitment Program for Leading Talent Team of Anhui Province (2019-16), and the Major Basic Program of Natural Science Foundation of Shandong Province (Grant No. ZR2021ZD01). A portion of this work was supported by the High Magnetic Field Laboratory of Anhui Province, China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, MD., Wang, Q., Hou, XY. et al. Anisotropic interfacial superconductivity induced at point contacts on topological semimetal grey arsenic. Sci. China Phys. Mech. Astron. 66, 297411 (2023). https://doi.org/10.1007/s11433-023-2165-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2165-5

Navigation