Skip to main content
Log in

Molecular transport under extreme confinement

  • Invited Review
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Mass transport through the nanoporous medium is ubiquitous in nature and industry. Unlike the macroscale transport phenomena which have been well understood by the theory of continuum mechanics, the relevant physics and mechanics on the nanoscale transport still remain mysterious. Recent developments in fabrication of slit-like nanocapillaries with precise dimensions and atomically smooth surfaces have promoted the fundamental research on the molecular transport under extreme confinement. In this review, we summarized the contemporary progress in the study of confined molecular transport of water, ions and gases, based on both experiments and molecular dynamics simulations. The liquid exhibits a pronounced layered structure that extends over several intermolecular distances from the solid surface, which has a substantial influence on static properties and transport behaviors under confinement. Latest studies have also shown that those molecular details could provide some new understanding on the century-old classical theory in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. P. Zhao, Physical Mechanics of Surfaces and Interfaces (in Chinese) (Science Press, Beijing, 2012).

    Google Scholar 

  2. Y. P. Zhao, Lectures on Mechanics (in Chinese) (Science Press, Beijing, 2018).

    Google Scholar 

  3. T. Jacobsen, and S. Lloyd, Sennacherib’s Aqueduct at Jerwan (University of Chicago Press, Chicago, 1935), p. 34.

    Google Scholar 

  4. H. Lamb, Hydrodynamics (Cambridge University Press, Cambridge, 1945).

    MATH  Google Scholar 

  5. G. Karniadakis, A. Beskok, and N. Aluru, Microflows and Nanoflows: Fundamentals and Simulation (Springer Science & Business Media, New York, 2005).

    MATH  Google Scholar 

  6. R. B. Schoch, J. Han, and P. Renaud, Rev. Mod. Phys. 80, 839 (2008).

    Article  ADS  Google Scholar 

  7. N. Kavokine, R. R. Netz, and L. Bocquet, Annu. Rev. Fluid Mech. 53, 377 (2021), arXiv: 2011.14111.

    Article  Google Scholar 

  8. L. Bocquet, Nat. Mater. 19, 254 (2020), arXiv: 2003.00211.

    Article  ADS  Google Scholar 

  9. L. Bocquet, and E. Charlaix, Chem. Soc. Rev. 39, 1073 (2010).

    Article  Google Scholar 

  10. J. N. Israelachvili, and R. M. Pashley, Nature 306, 249 (1983).

    Article  ADS  Google Scholar 

  11. S. Granick, Science 253, 1374 (1991).

    Article  ADS  Google Scholar 

  12. J. N. Israelachvili, and P. M. McGuiggan, Science 241, 795 (1988).

    Article  ADS  Google Scholar 

  13. J. A. Thomas, and A. J. H. McGaughey, Phys. Rev. Lett. 102, 184502 (2009).

    Article  ADS  Google Scholar 

  14. Q. Yuan, and Y. P. Zhao, J. Am. Chem. Soc. 131, 6374 (2009).

    Article  Google Scholar 

  15. Q. Yang, P. Z. Sun, L. Fumagalli, Y. V. Stebunov, S. J. Haigh, Z. W. Zhou, I. V. Grigorieva, F. C. Wang, and A. K. Geim, Nature 588, 250 (2020), arXiv: 2009.11238.

    Article  ADS  Google Scholar 

  16. Y. Z. Yu, J. C. Fan, A. Esfandiar, Y. B. Zhu, H. A. Wu, and F. C. Wang, J. Phys. Chem. C 123, 1462 (2019).

    Article  Google Scholar 

  17. G. Algara-Siller, O. Lehtinen, F. C. Wang, R. R. Nair, U. Kaiser, H. A. Wu, A. K. Geim, and I. V. Grigorieva, Nature 519, 443 (2015), arXiv: 1412.7498.

    Article  ADS  Google Scholar 

  18. W. Zhou, K. Yin, C. Wang, Y. Zhang, T. Xu, A. Borisevich, L. Sun, J. C. Idrobo, M. F. Chisholm, S. T. Pantelides, R. F. Klie, and A. R. Lupini, Nature 528, E1 (2015).

    Article  ADS  Google Scholar 

  19. J. Chen, G. Schusteritsch, C. J. Pickard, C. G. Salzmann, and A. Michaelides, Phys. Rev. Lett. 116, 025501 (2016), arXiv: 1508.03743.

    Article  ADS  Google Scholar 

  20. Y. B. Zhu, F. C. Wang, J. Bai, X. C. Zeng, and H. A. Wu, ACS Nano 9, 12197 (2015).

    Article  Google Scholar 

  21. J. C. Li, Y. B. Zhu, J. Xia, J. C. Fan, H. A. Wu, and F. C. Wang, J. Chem. Phys. 154, 224508 (2021).

    Article  ADS  Google Scholar 

  22. L. Fumagalli, A. Esfandiar, R. Fabregas, S. Hu, P. Ares, A. Janardanan, Q. Yang, B. Radha, T. Taniguchi, K. Watanabe, G. Gomila, K. S. Novoselov, and A. K. Geim, Science 360, 1339 (2018), arXiv: 1806.04486.

    Article  ADS  Google Scholar 

  23. D. Muñoz-Santiburcio, and D. Marx, Chem. Rev. 121, 6293 (2021).

    Article  Google Scholar 

  24. S. Sahu, and M. Zwolak, Rev. Mod. Phys. 91, 021004 (2019), arXiv: 1809.05098.

    Article  ADS  Google Scholar 

  25. J. Shen, G. Liu, Y. Han, and W. Jin, Nat. Rev. Mater. 6, 294 (2021).

    Article  ADS  Google Scholar 

  26. K. Lin, X. Huang, and Y. P. Zhao, Energy Fuels 34, 258 (2020).

    Article  Google Scholar 

  27. H. Yu, H. Y. Xu, J. C. Fan, Y. B. Zhu, F. C. Wang, and H. A. Wu, Energy Fuels 35, 911 (2021).

    Article  Google Scholar 

  28. J. H. Qian, Y. H. Li, H. A. Wu, and F. C. Wang, Carbon 180, 85 (2021).

    Article  Google Scholar 

  29. L. Sun, H. Liu, W. He, G. Li, S. Zhang, R. Zhu, X. Jin, S. Meng, and H. Jiang, Pet. Explor. Dev. 48, 527 (2021).

    Article  Google Scholar 

  30. D. Wang, Y. Tian, and L. Jiang, Small 17, 2100788 (2021).

    Article  Google Scholar 

  31. J. Zhong, M. A. Alibakhshi, Q. Xie, J. Riordon, Y. Xu, C. Duan, and D. Sinton, Acc. Chem. Res. 53, 347 (2020).

    Article  Google Scholar 

  32. R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, Science 335, 442 (2012), arXiv: 1112.3488.

    Article  ADS  Google Scholar 

  33. R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. Nair, Science 343, 752 (2014), arXiv: 1401.3134.

    Article  ADS  Google Scholar 

  34. J. Abraham, K. S. Vasu, C. D. Williams, K. Gopinadhan, Y. Su, C. T. Cherian, J. Dix, E. Prestat, S. J. Haigh, I. V. Grigorieva, P. Carbone, A. K. Geim, and R. R. Nair, Nat. Nanotech. 12, 546 (2017), arXiv: 1701.05519.

    Article  ADS  Google Scholar 

  35. S. Zhao, C. Jiang, J. Fan, S. Hong, P. Mei, R. Yao, Y. Liu, S. Zhang, H. Li, H. Zhang, C. Sun, Z. Guo, P. Shao, Y. Zhu, J. Zhang, L. Guo, Y. Ma, J. Zhang, X. Feng, F. Wang, H. Wu, and B. Wang, Nat. Mater. 20, 1551 (2021).

    Article  ADS  Google Scholar 

  36. B. Radha, A. Esfandiar, F. C. Wang, A. P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S. J. Haigh, I. V. Grigorieva, H. A. Wu, and A. K. Geim, Nature 538, 222 (2016), arXiv: 1606.09051.

    Article  ADS  Google Scholar 

  37. A. Esfandiar, B. Radha, F. C. Wang, Q. Yang, S. Hu, S. Garaj, R. R. Nair, A. K. Geim, and K. Gopinadhan, Science 358, 511 (2017), ar-Xiv: 1709.03928.

    Article  ADS  Google Scholar 

  38. A. Keerthi, A. K. Geim, A. Janardanan, A. P. Rooney, A. Esfandiar, S. Hu, S. A. Dar, I. V. Grigorieva, S. J. Haigh, F. C. Wang, and B. Radha, Nature 558, 420 (2018), arXiv: 1805.05835.

    Article  ADS  Google Scholar 

  39. K. Gopinadhan, S. Hu, A. Esfandiar, M. Lozada-Hidalgo, F. C. Wang, Q. Yang, A. V. Tyurnina, A. Keerthi, B. Radha, and A. K. Geim, Science 363, 145 (2019), arXiv: 1811.09227.

    Article  ADS  Google Scholar 

  40. A. K. Geim, and I. V. Grigorieva, Nature 499, 419 (2013).

    Article  Google Scholar 

  41. A. K. Geim, Nano Lett. 21, 6356 (2021), arXiv: 2107.12149.

    Article  ADS  Google Scholar 

  42. D. A. Bandurin, I. Torre, R. Krishna Kumar, M. Ben Shalom, A. Tomadin, A. Principi, G. H. Auton, E. Khestanova, K. S. Novoselov, I. V. Grigorieva, L. A. Ponomarenko, A. K. Geim, and M. Polini, Science 351, 1055 (2016), arXiv: 1509.04165.

    Article  ADS  Google Scholar 

  43. E. Secchi, S. Marbach, A. Niguès, D. Stein, A. Siria, and L. Bocquet, Nature 537, 210 (2016).

    Article  ADS  Google Scholar 

  44. Y. Z. Yu, J. C. Fan, J. Xia, Y. B. Zhu, H. A. Wu, and F. C. Wang, Nanoscale 11, 8449 (2019).

    Article  Google Scholar 

  45. J. C. Fan, H. A. Wu, and F. C. Wang, Phys. Fluids 32, 012001 (2020).

    Article  ADS  Google Scholar 

  46. S. Gravelle, C. Ybert, L. Bocquet, and L. Joly, Phys. Rev. E 93, 033123 (2016), arXiv: 1603.07918.

    Article  ADS  Google Scholar 

  47. Y. H. Li, Y. Z. Yu, J. H. Qian, H. A. Wu, and F. C. Wang, Appl. Surf. Sci. 560, 150022 (2021).

    Article  Google Scholar 

  48. C. Vega, and J. L. F. Abascal, Phys. Chem. Chem. Phys. 13, 19663 (2011).

    Article  Google Scholar 

  49. H. Chan, M. J. Cherukara, B. Narayanan, T. D. Loeffler, C. Benmore, S. K. Gray, and S. K. R. S. Sankaranarayanan, Nat. Commun. 10, 379 (2019).

    Article  ADS  Google Scholar 

  50. T. D. Loeffler, H. Chan, K. Sasikumar, B. Narayanan, M. J. Cherukara, S. Gray, and S. K. R. S. Sankaranarayanan, J. Phys. Chem. C 123, 22643 (2019).

    Article  Google Scholar 

  51. H. F. Ye, J. Wang, Y. G. Zheng, H. W. Zhang, and Z. Chen, Phys. Chem. Chem. Phys. 23, 10164 (2021).

    Article  Google Scholar 

  52. Q. Miao, Q. Yuan, and Y. P. Zhao, Microfluid Nanofluid 22, 141 (2018).

    Article  Google Scholar 

  53. Q. Miao, Q. Yuan, and Y. P. Zhao, Phys. Fluids 32, 102103 (2020).

    Article  ADS  Google Scholar 

  54. J. C. Fan, J. De Coninck, H. A. Wu, and F. C. Wang, Phys. Rev. Lett. 124, 125502 (2020).

    Article  ADS  Google Scholar 

  55. J. C. Fan, J. De Coninck, H. A. Wu, and F. C. Wang, J. Colloid Interface Sci. 585, 320 (2021).

    Article  ADS  Google Scholar 

  56. Y. P. Zhao, Sci. China-Phys. Mech. Astron. 59, 114631 (2016).

    Article  Google Scholar 

  57. Q. Yuan, and Y. P. Zhao, Phys. Rev. Lett. 104, 246101 (2010).

    Article  ADS  Google Scholar 

  58. X. T. Yan, Y. K. Jin, X. M. Chen, C. Zhang, C. L. Hao, and Z. K. Wang, Sci. China-Phys. Mech. Astron. 63, 224601 (2020).

    Article  ADS  Google Scholar 

  59. J. Lou, S. L. Shi, C. Ma, C. J. Lv, and Q. S. Zheng, Sci. China-Phys. Mech. Astron. 64, 244711 (2021).

    Article  ADS  Google Scholar 

  60. F. C. Wang, and Y. P. Zhao, Soft Matter 7, 8628 (2011).

    Article  ADS  Google Scholar 

  61. L. Y. Wang, F. C. Wang, F. Q. Yang, and H. A. Wu, Sci. China-Phys. Mech. Astron. 57, 2152 (2014).

    Article  ADS  Google Scholar 

  62. Q. Xie, M. A. Alibakhshi, S. Jiao, Z. Xu, M. Hempel, J. Kong, H. G. Park, and C. Duan, Nat. Nanotech. 13, 238 (2018).

    Article  ADS  Google Scholar 

  63. S. K. Kannam, B. D. Todd, J. S. Hansen, and P. J. Daivis, J. Chem. Phys. 138, 094701 (2013).

    Article  ADS  Google Scholar 

  64. F. Wang, and Y. Zhao, Acta Mech. Solid Sin. 24, 101 (2011).

    Article  ADS  Google Scholar 

  65. B. Grosjean, C. Pean, A. Siria, L. Bocquet, R. Vuilleumier, and M. L. Bocquet, J. Phys. Chem. Lett. 7, 4695 (2016).

    Article  Google Scholar 

  66. N. Wei, X. Peng, and Z. Xu, Phys. Rev. E 89, 012113 (2014), arXiv: 1308.5367.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (Grant No. 2019YFA0708700), the National Natural Science Foundation of China (Grant No. 11922213), the Fundamental Research Funds for the Central Universities (Grant No. WK2480000005), and the Youth Innovation Promotion Association CAS (Grant No. 2020449). The authors express their thanks to Quan Wang for helping with the artwork in Figure 2(g).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HengAn Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Qian, J., Fan, J. et al. Molecular transport under extreme confinement. Sci. China Phys. Mech. Astron. 65, 264601 (2022). https://doi.org/10.1007/s11433-021-1853-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1853-3

PACS number(s)

Navigation