Skip to main content
Log in

Strong-field photoionization of intense laser fields by controlling optical singularities

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The spatial features of a light field, such as in the form of the optical singularities, provide a new degree of freedom for the application of light fields in different areas of science and technology. However, although the exploration of structured light is growing rapidly, the investigation of strong-field photoionization using such light fields is noticeably lagging behind. Here, we present an experimental study that reveals the signatures of intense, structured light fields with controlled optical singularities in strong-field photoionization. The different types of optical singularities can be identified through photoionization observables, i.e., photoelectron momentum distributions (PMDs). By concurrently shifting the locations of the phase and polarization singularities, the focal electric field features can be designated, and subsequently, the photoionization appearances can be manipulated. In this process, the behaviors of the different intense optical singularities are clearly visualized by the PMDs. This work will advance both the strong-field science and singularity optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. M. R. Dennis, K. O’Holleran, and M. J. Padgett, Prog. Opt. 53, 293 (2009).

    Article  ADS  Google Scholar 

  2. Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, and X. Yuan, Light Sci. Appl. 8, 90 (2019).

    Article  ADS  Google Scholar 

  3. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).

    Article  ADS  Google Scholar 

  4. Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).

    Article  Google Scholar 

  5. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, Phys. Rev. Lett. 94, 233902 (2005).

    Article  ADS  Google Scholar 

  6. S. Feng, and P. Kumar, Phys. Rev. Lett. 101, 163602 (2008).

    Article  ADS  Google Scholar 

  7. R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, Science 338, 640 (2012), arXiv: 1207.2376.

    Article  ADS  Google Scholar 

  8. M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, Science 341, 537 (2013).

    Article  ADS  Google Scholar 

  9. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, Phys. Rev. Lett. 78, 4713 (1997).

    Article  ADS  Google Scholar 

  10. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nat. Photon. 6, 488 (2012).

    Article  ADS  Google Scholar 

  11. Y. Chen, K. Y. Xia, W. G. Shen, J. Gao, Z. Q. Yan, Z. Q. Jiao, J. P. Dou, H. Tang, Y. Q. Lu, and X. M. Jin, Phys. Rev. Lett. 124, 153601 (2020), arXiv: 1904.07926.

    Article  ADS  Google Scholar 

  12. V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, Nat. Commun. 6, 7706 (2015), arXiv: 1504.03096.

    Article  ADS  Google Scholar 

  13. A. F. Abouraddy, and K. C. Toussaint Jr., Phys. Rev. Lett. 96, 153901 (2006).

    Article  ADS  Google Scholar 

  14. J. T. Barreiro, T. C. Wei, and P. G. Kwiat, Phys. Rev. Lett. 105, 030407 (2010), arXiv: 1009.5412.

    Article  ADS  Google Scholar 

  15. B. J. Roxworthy, and K. C. Toussaint Jr., New J. Phys. 12, 073012 (2010).

    Article  ADS  Google Scholar 

  16. V. D’Ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, Nat. Commun. 4, 2432 (2013), arXiv: 1306.1606.

    Article  ADS  Google Scholar 

  17. M. Zürch, C. Kern, P. Hansinger, A. Dreischuh, and C. Spielmann, Nat. Phys. 8, 743 (2012).

    Article  Google Scholar 

  18. G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, Phys. Rev. Lett. 113, 153901 (2014).

    Article  ADS  Google Scholar 

  19. F. Kong, C. Zhang, H. Larocque, Z. Li, F. Bouchard, D. H. Ko, G. G. Brown, A. Korobenko, T. J. Hammond, R. W. Boyd, E. Karimi, and P. B. Corkum, Nat. Commun. 10, 2020 (2019).

    Article  ADS  Google Scholar 

  20. L. Rego, K. M. Dorney, N. J. Brooks, Q. L. Nguyen, C. T. Liao, J. San Román, D. E. Couch, A. Liu, E. Pisanty, M. Lewenstein, L. Plaja, H. C. Kapteyn, M. M. Murnane, and C. Hernández-García, Science 364, eaaw9486 (2019), arXiv: 1901.10942.

    Article  ADS  Google Scholar 

  21. E. Pisanty, L. Rego, J. San Román, A. Picón, K. M. Dorney, H. C. Kapteyn, M. M. Murnane, L. Plaja, M. Lewenstein, and C. Hernández-García, Phys. Rev. Lett. 122, 203201 (2019), arXiv: 1810.06503.

    Article  ADS  Google Scholar 

  22. K. M. Dorney, L. Rego, N. J. Brooks, J. San Román, C. T. Liao, J. L. Ellis, D. Zusin, C. Gentry, Q. L. Nguyen, J. M. Shaw, A. Picón, L. Plaja, H. C. Kapteyn, M. M. Murnane, and C. Hernández-García, Nat. Photon 13, 123 (2019).

    Article  ADS  Google Scholar 

  23. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).

    Article  ADS  Google Scholar 

  24. A. Picón, A. Benseny, J. Mompart, J. R. Vázquez de Aldana, L. Plaja, G. F. Calvo, and L. Roso, New J. Phys. 12, 083053 (2010), arXiv: 1005.1610.

    Article  ADS  Google Scholar 

  25. B. Baghdasaryan, B. Böning, W. Paufler, and S. Fritzsche, Phys. Rev. A 99, 023403 (2019).

    Article  ADS  Google Scholar 

  26. D. Seipt, R. A. Müller, A. Surzhykov, and S. Fritzsche, Phys. Rev. A 94, 053420 (2016).

    Article  ADS  Google Scholar 

  27. W. Paufler, B. Böning, and S. Fritzsche, Phys. Rev. A 97, 043418 (2018).

    Article  ADS  Google Scholar 

  28. B. Böning, W. Paufler, and S. Fritzsche, Phys. Rev. A 98, 023407 (2018).

    Article  ADS  Google Scholar 

  29. R. A. Müller, D. Seipt, R. Beerwerth, M. Ornigotti, A. Szameit, S. Fritzsche, and A. Surzhykov, Phys. Rev. A 94, 041402 (2016).

    Article  ADS  Google Scholar 

  30. K. S. Youngworth, and T. G. Brown, Opt. Express 7, 77 (2000).

    Article  ADS  Google Scholar 

  31. K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, Nat. Photon. 9, 796 (2015).

    Article  ADS  Google Scholar 

  32. Y. Fang, M. Han, P. Ge, Z. Guo, X. Yu, Y. Deng, C. Wu, Q. Gong, and Y. Liu, Nat. Photon. 15, 115 (2021).

    Article  ADS  Google Scholar 

  33. M. Li, J. W. Geng, H. Liu, Y. Deng, C. Wu, L. Y. Peng, Q. Gong, and Y. Liu, Phys. Rev. Lett. 112, 113002 (2014).

    Article  ADS  Google Scholar 

  34. H. Larocque, D. Sugic, D. Mortimer, A. J. Taylor, R. Fickler, R. W. Boyd, M. R. Dennis, and E. Karimi, Nat. Phys. 14, 1079 (2018).

    Article  Google Scholar 

  35. S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, Appl. Opt. 43, 688 (2004).

    Article  ADS  Google Scholar 

  36. M. Beresna, M. Gecevicius, and P. G. Kazansky, Opt. Mater. Express 1, 783 (2011).

    Article  ADS  Google Scholar 

  37. J. Ullrich, R. Moshammer, R. Dörner, O. Jagutzki, V. Mergel, H. Schmidt-Böcking, and L. Spielberger, J. Phys. B-At. Mol. Opt. Phys. 30, 2917 (1997).

    Article  ADS  Google Scholar 

  38. Y. Shao, M. Li, M. M. Liu, X. Sun, X. Xie, P. Wang, Y. Deng, C. Wu, Q. Gong, and Y. Liu, Phys. Rev. A 92, 013415 (2015).

    Article  ADS  Google Scholar 

  39. A. Hartung, S. Eckart, S. Brennecke, J. Rist, D. Trabert, K. Fehre, M. Richter, H. Sann, S. Zeller, K. Henrichs, G. Kastirke, J. Hoehl, A. Kalinin, M. S. Schöffler, T. Jahnke, L. P. H. Schmidt, M. Lein, M. Kunitski, and R. Dörner, Nat. Phys. 15, 1222 (2019), arXiv: 1902.07278.

    Article  Google Scholar 

  40. P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, Phys. Rev. Lett. 42, 1127 (1979).

    Article  ADS  Google Scholar 

  41. F. Lindner, M. G. Schätzel, H. Walther, A. Baltuška, E. Goulielmakis, F. Krausz, D. B. Milošević, D. Bauer, W. Becker, and G. G. Paulus, Phys. Rev. Lett. 95, 040401 (2005), arXiv: quant-ph/0503165.

    Article  ADS  Google Scholar 

  42. M. M. Liu, Y. Shao, M. Han, P. Ge, Y. Deng, C. Wu, Q. Gong, and Y. Liu, Phys. Rev. Lett. 120, 043201 (2018).

    Article  ADS  Google Scholar 

  43. M. Li, Y. Cai, S. Yan, Y. Liang, P. Zhang, and B. Yao, Phys. Rev. A 97, 053842 (2018).

    Article  ADS  Google Scholar 

  44. M. Li, Y. Liu, H. Liu, Q. Ning, L. Fu, J. Liu, Y. Deng, C. Wu, L. Y. Peng, and Q. Gong, Phys. Rev. Lett. 111, 023006 (2013).

    Article  ADS  Google Scholar 

  45. G. Indebetouw, J. Modern Opt. 40, 73 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunquan Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 92050201, 11774013, and 11527901).

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Guo, Z., Ge, P. et al. Strong-field photoionization of intense laser fields by controlling optical singularities. Sci. China Phys. Mech. Astron. 64, 274211 (2021). https://doi.org/10.1007/s11433-021-1689-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1689-7

Key Words

Navigation