Skip to main content
Log in

Tunable photon-induced spatial modulation of free electrons

  • Article
  • Published:

From Nature Materials

View current issue Submit your manuscript

Abstract

Spatial modulation of electron beams is an essential tool for various applications such as nanolithography and imaging, yet its conventional implementations are severely limited and inherently non-tunable. Conversely, proposals of light-driven electron spatial modulation promise tunable electron wavefront shaping, for example, using the mechanism of photon-induced near-field electron microscopy. Here we present tunable photon-induced spatial modulation of electrons through their interaction with externally controlled surface plasmon polaritons (SPPs). Using recently developed methods of shaping SPP patterns, we demonstrate a dynamic control of the electron beam with a variety of electron distributions and verify their coherence through electron diffraction. Finally, the nonlinearity stemming from energy post-selection provides us with another avenue for controlling the electron shape, generating electron features far below the SPP wavelength. Our work paves the way to on-demand electron wavefront shaping at ultrafast timescales, with prospects for aberration correction, nanofabrication and material characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Concept illustration of tunable photo-induced free-electron spatial amplitude modulation.
Fig. 2: Experimental set-up and proof of concept of photon-induced spatial modulation of free electrons.
Fig. 3: Electron diffraction from a hexagonal plasmonic vortex array.
Fig. 4: Spatial modulation of free electrons by active control of SPP boundary conditions.
Fig. 5: Nonlinear control over the electron distribution using a plasmonic pattern and electron post-selection.

Similar content being viewed by others

Data availability

Due to the large size of the raw data files (over 16.5 GB), the data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Hawkes, P. W. & Kasper, E. in Principles of Electron Optics Vol. 1 (eds Hawkes, P. W. & Kasper, E.) 276–289 (Academic Press, 1996).

  2. Haider, M. et al. Electron microscopy image enhanced. Nature 392, 768–769 (1998).

    Article  CAS  Google Scholar 

  3. Jönsson, C. Elektroneninterferenzen an mehreren künstlich hergestellten feinspalten. Z. Phys. 161, 454–474 (1961).

    Article  Google Scholar 

  4. Verbeeck, J., Tian, H. & Schattschneider, P. Production and application of electron vortex beams. Nature 467, 301–304 (2010).

    Article  CAS  Google Scholar 

  5. Uchida, M. & Tonomura, A. Generation of electron beams carrying orbital angular momentum. Nature 464, 737–739 (2010).

    Article  CAS  Google Scholar 

  6. McMorran, B. J. et al. Electron vortex beams with high quanta of orbital angular momentum. Science 331, 192–195 (2011).

    Article  CAS  Google Scholar 

  7. Grillo, V. et al. Generation of nondiffracting electron bessel beams. Phys. Rev. X 4, 011013 (2014).

    Google Scholar 

  8. Shiloh, R., Lereah, Y., Lilach, Y. & Arie, A. Sculpturing the electron wave function using nanoscale phase masks. Ultramicroscopy 144, 26–31 (2014).

    Article  CAS  Google Scholar 

  9. Harvey, T. R. et al. Efficient diffractive phase optics for electrons. New J. Phys. 16, 93039 (2014).

    Article  Google Scholar 

  10. Verbeeck, J. et al. Demonstration of a 2 × 2 programmable phase plate for electrons. Ultramicroscopy 190, 58–65 (2018).

    Article  CAS  Google Scholar 

  11. Tavabi, A. H. et al. Experimental demonstration of an electrostatic orbital angular momentum sorter for electron beams. Phys. Rev. Lett. 126, 94802 (2021).

    Article  CAS  Google Scholar 

  12. Verbeeck, J., Ibáñez, F. V. & Béché, A. Demonstration of a 48 pixel programmable phase plate for adaptive electron optics. In Proc. Electron Beam Spectroscopy for Nanooptics (nanoGe, 2021).

  13. Vieu, C. et al. Electron beam lithography: resolution limits and applications. Appl. Surf. Sci. 164, 111–117 (2000).

    Article  CAS  Google Scholar 

  14. Adrian, M., Dubochet, J., Lepault, J. & McDowall, A. W. Cryo-electron microscopy of viruses. Nature 308, 32–36 (1984).

    Article  CAS  Google Scholar 

  15. Guzzinati, G. et al. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams. Nat. Commun. 8, 14999 (2017).

    Article  CAS  Google Scholar 

  16. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    Article  CAS  Google Scholar 

  17. Fink, M. Time reversal of ultrasonic fields. I: Basic principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 555–566 (1992).

    Article  CAS  Google Scholar 

  18. Madan, I. et al. Holographic imaging of electromagnetic fields via electron-light quantum interference. Sci. Adv. 5, aav8358 (2019).

    Article  Google Scholar 

  19. Vanacore, G. M. et al. Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. Nat. Mater. 18, 573–579 (2019).

    Article  CAS  Google Scholar 

  20. Feist, A., Yalunin, S. V., Schäfer, S. & Ropers, C. High-purity free-electron momentum states prepared by three-dimensional optical phase modulation. Phys. Rev. Res. 2, 043227 (2020).

    Article  CAS  Google Scholar 

  21. Tsesses, S. et al. Spatial modulation of free-electron wavepackets by shaping ultrafast plasmonic excitations. In Proc. 2020 Conference on Lasers and Electro-Optics (CLEO) 1–2 (IEEE, 2020).

  22. Schwartz, O. et al. Laser phase plate for transmission electron microscopy. Nat. Methods 16, 1016–1020 (2019).

    Article  CAS  Google Scholar 

  23. Mihaila, M. C. C. et al. Transverse electron beam shaping with light. Phys. Rev. X 12, 031043 (2022).

    Google Scholar 

  24. Konečná, A. & de Abajo, F. J. G. Electron beam aberration correction using optical near fields. Phys. Rev. Lett. 125, 30801 (2020).

    Article  Google Scholar 

  25. de Abajo, F. J. G. & Konečná, A. Optical modulation of electron beams in free space. Phys. Rev. Lett. 126, 123901 (2021).

    Article  Google Scholar 

  26. Vanacore, G. M., Madan, I. & Carbone, F. Spatio-temporal shaping of a free-electron wave function via coherent light–electron interaction. Riv. Nuovo Cim. 43, 567–597 (2020).

    Article  CAS  Google Scholar 

  27. García De Abajo, F. J., Barwick, B. & Carbone, F. Electron diffraction by plasmon waves. Phys. Rev. B 94, 041404(R) (2016).

    Article  Google Scholar 

  28. Garcia De Abajo, F. J., Asenjo-Garcia, A. & Kociak, M. Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields. Nano Lett. 10, 1859–1863 (2010).

    Article  CAS  Google Scholar 

  29. Park, S. T., Lin, M. & Zewail, A. H. Photon-induced near-field electron microscopy (PINEM): theoretical and experimental. New J. Phys. 12, 123028 (2010).

    Article  CAS  Google Scholar 

  30. Reinhardt, O. & Kaminer, I. Theory of shaping electron wavepackets with light. ACS Photon. 7, 2859–2870 (2020).

    Article  CAS  Google Scholar 

  31. Wang, K. et al. Coherent interaction between free electrons and a photonic cavity. Nature 582, 50–54 (2020).

    Article  CAS  Google Scholar 

  32. Cai, W., Reinhardt, O., Kaminer, I. & de Abajo, F. J. G. Efficient orbital angular momentum transfer between plasmons and free electrons. Phys. Rev. B 98, 45424 (2018).

    Article  CAS  Google Scholar 

  33. Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).

    Article  CAS  Google Scholar 

  34. Piazza, L. et al. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nat. Commun. 6, 6407 (2015).

    Article  CAS  Google Scholar 

  35. Vanacore, G. M. et al. Attosecond coherent control of free-electron wave functions using semi-infinite light fields. Nat. Commun. 9, 2694 (2018).

    Article  CAS  Google Scholar 

  36. Pomarico, E. et al. meV resolution in laser-assisted energy-filtered transmission electron microscopy. ACS Photon. 5, 759–764 (2018).

    Article  CAS  Google Scholar 

  37. Liu, H. et al. Visualization of plasmonic couplings using ultrafast electron microscopy. Nano Lett. 21, 5842–5849 (2021).

    Article  CAS  Google Scholar 

  38. Kfir, O. et al. Controlling free electrons with optical whispering-gallery modes. Nature 582, 46–49 (2020).

    Article  CAS  Google Scholar 

  39. Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200–203 (2015).

    Article  CAS  Google Scholar 

  40. Henke, J.-W. et al. Integrated photonics enables continuous-beam electron phase modulation. Nature 600, 653–658 (2021).

    Article  CAS  Google Scholar 

  41. Liu, Z. et al. Focusing surface plasmons with a plasmonic lens. Nano Lett. 5, 1726–1729 (2005).

    Article  CAS  Google Scholar 

  42. Gorodetski, Y., Niv, A., Kleiner, V. & Hasman, E. Observation of the spin-based plasmonic effect in nanoscale structures. Phys. Rev. Lett. 101, 043903 (2008).

    Article  CAS  Google Scholar 

  43. Liu, Z. et al. Broad band two-dimensional manipulation of surface plasmons. Nano Lett. 9, 462–466 (2009).

    Article  CAS  Google Scholar 

  44. Tsesses, S., Cohen, K., Ostrovsky, E., Gjonaj, B. & Bartal, G. Spin–orbit interaction of light in plasmonic lattices. Nano Lett. 19, 4010–4016 (2019).

    Article  CAS  Google Scholar 

  45. Frischwasser, K. et al. Real-time sub-wavelength imaging of surface waves with nonlinear near-field optical microscopy. Nat. Photon. 15, 442–448 (2021).

    Article  CAS  Google Scholar 

  46. Bliokh, K. Y. et al. Theory and applications of free-electron vortex states. Phys. Rep. 690, 1–70 (2017).

    Article  CAS  Google Scholar 

  47. Tavabi, A. H. et al. Generation of electron vortices using nonexact electric fields. Phys. Rev. Res. 2, 013185 (2020).

    Article  CAS  Google Scholar 

  48. Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).

    Article  CAS  Google Scholar 

  49. Davis, T. J. et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 368, 386–390 (2020).

    Article  Google Scholar 

  50. Ghosh, A. et al. A topological lattice of plasmonic merons. Appl. Phys. Rev. 8, 041413 (2021).

    Article  CAS  Google Scholar 

  51. Dai, Y. et al. Ultrafast microscopy of a twisted plasmonic spin skyrmion. Appl. Phys. Rev. 9, 011420 (2022).

    Article  CAS  Google Scholar 

  52. Park, H. S. et al. Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography. Nat. Nanotechnol. 9, 337–342 (2014).

    Article  CAS  Google Scholar 

  53. Roitman, D., Shiloh, R., Lu, P.-H., Dunin-Borkowski, R. E. & Arie, A. Shaping of electron beams using sculpted thin films. ACS Photon. 8, 3394–3405 (2021).

    Article  CAS  Google Scholar 

  54. Freimund, D. L., Aflatooni, K. & Batelaan, H. Observation of the Kapitza–Dirac effect. Nature 413, 142–143 (2001).

    Article  CAS  Google Scholar 

  55. Ostrovsky, E., Cohen, K., Tsesses, S., Gjonaj, B. & Bartal, G. Nanoscale control over optical singularities. Optica 5, 283–288 (2018).

    Article  CAS  Google Scholar 

  56. Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

    Article  CAS  Google Scholar 

  57. Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R. & Hell, S. W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939 (2006).

    Article  CAS  Google Scholar 

  58. Das, P. et al. Stimulated electron energy loss and gain in an electron microscope without a pulsed electron gun. Ultramicroscopy 203, 44–51 (2019).

    Article  CAS  Google Scholar 

  59. Ryabov, A., Thurner, J. W., Nabben, D., Tsarev, M. V. & Baum, P. Attosecond metrology in a continuous-beam transmission electron microscope. Sci. Adv. 6, eabb1393 (2022).

    Article  Google Scholar 

  60. Spektor, G. et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187–1191 (2017).

    Article  CAS  Google Scholar 

  61. Spektor, G. et al. Mixing the light spin with plasmon orbit by nonlinear light-matter interaction in gold. Phys. Rev. X 9, 021031 (2019).

    CAS  Google Scholar 

  62. Dai, Y. et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature 588, 616–619 (2020).

    Article  CAS  Google Scholar 

  63. Prinz, E. et al. Functional meta lenses for compound plasmonic vortex field generation and control. Nano Lett. 21, 3941–3946 (2021).

    Article  CAS  Google Scholar 

  64. Dai, Y. et al. Ultrafast nanofemto photoemission electron microscopy of vectorial plasmonic fields. MRS Bull. 46, 738–746 (2021).

    Article  Google Scholar 

  65. Kozák, M., Schönenberger, N. & Hommelhoff, P. Ponderomotive generation and detection of attosecond free-electron pulse trains. Phys. Rev. Lett. 120, 103203 (2018).

    Article  Google Scholar 

  66. Cho, B., Ichimura, T., Shimizu, R. & Oshima, C. Quantitative evaluation of spatial coherence of the electron beam from low temperature field emitters. Phys. Rev. Lett. 92, 246103 (2004).

    Article  CAS  Google Scholar 

  67. Xiaoyan, L. et al. Three-dimensional vectorial imaging of surface phonon polaritons. Science 371, 1364–1367 (2021).

    Article  Google Scholar 

  68. Gordon, E. I. A review of acoustooptical deflection and modulation devices. Appl. Opt. 5, 1629–1639 (1966).

    Article  CAS  Google Scholar 

  69. Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    Article  CAS  Google Scholar 

  70. Gjonaj, B. et al. Active spatial control of plasmonic fields. Nat. Photon. 5, 360–363 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Samples were prepared at Technion’s Micro and Nano Fabrication Unit, with the help of G. Ankonina and L. Popilevsky. Measurements were conducted in I.K.’s UTEM laboratory in the electron microscopy centre (MIKA) in the Department of Materials Science and Engineering of the Technion. We acknowledge the Russell Berrie Nanotechnology Institute and the Hellen Diller Quantum Center for their support of this research. S.T. acknowledges support by the Adams Fellowship Program of the Israel Academy of Science and Humanities and thanks A. Karnieli, A. Arie, Y. Kauffmann and M. Krueger for helpful conversations. R.D. thanks G. M. Vanacore for helpful discussions on performing electron diffraction. We are especially grateful to the Q-SORT consortium for inspiring this work. I.K. acknowledges the support of the Azrieli Faculty Fellowship. This research was supported by the European Research Council starting grant NanoEP 851780, the European Union’s Horizon 2020 research and innovation programme grant SMART-electron 964591 and the Israel Science Foundation grants 3334/19 and 831/19.

Author information

Authors and Affiliations

Authors

Contributions

S.T. and I.K. conceived the project. S.T. and K.C. designed and fabricated the samples. R.D., S.T. and K.W. conducted the measurements. O.R., S.T. and T.B. performed simulations and theoretical calculations. G.B. and I.K. supervised the project. All authors participated in writing the manuscript and analysing the experimental results.

Corresponding author

Correspondence to Ido Kaminer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Benjamin McMorran and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Sample design and fabrication.

(a) Illustration of the sample used in the experiments, overlaid with the cross-section of the long-range surface plasmon polariton (SPP), showing its electric field amplitude in the direction of electron propagation (|Ez|). The vertical arrow provides an axis for the SPP amplitude profile. (b) A SEM micrograph of the various plasmonic coupling slits used in our experiments, which were optimized for broadband operation around an excitation wavelength of 730 nm and milled into the gold layer of the sample (scale bar is 10 microns). The coordinate system of the experiment appears in both (a) and (b), rotated to fit the observation direction in each case.

Extended Data Fig. 2 Electron energy filtering schemes used in the experiment.

The figure shows a representative measurement of the electron energy loss spectrum (EELS) measured in our experiment (blue area), with visible peaks at integer multiples of the laser pulse (~1.7 eV). The measured EELS without laser pulse excitation is given by the dotted gold curve. For the measurements performed in Figs. 23, we filter electrons that gained energy, as marked by the dashed black frame, effectively adding up all positive free-electron–light interaction orders. For the measurements performed in Fig. 4, we filter electrons that underwent interactions of specific orders, as marked by the light orange rectangles (each with a ~1 eV energy width). The energy dispersion of our EELS measurement was 0.1 eV per pixel.

Extended Data Fig. 3 Theory of photon-induced amplitude and phase modulation.

(a),(b) Calculated amplitude and phase of the out-of-plane electric field for a 1st order plasmonic Bessel vortex, created by a circular coupling slit as in Fig. 2b. The field is calculated via the Huygens principle method. (c),(d) Calculated amplitude and phase of the transverse electron wavefunction, after interaction with the SPP vortex presented in (a),(b), in the low-intensity interaction regime. The wavefunction distribution is calculated via the expression given in Methods section, by summing over the first 10 interaction orders. The fine match between the electron and electric field distributions suggests that light shapes both the electron amplitude and phase, as was also verified by the diffraction measurement in Fig. 3. A specific consequence of shaping both the amplitude and the phase is that angular momentum can indeed be transferred from the SPP vortex field to the electrons interacting with it.

Extended Data Fig. 4 Image processing of the electron distribution measurements.

The figure illustrates the process of creating the electron distribution images presented throughout the manuscript. (a) The raw data without any manipulation. Random pixel flaring greatly reduces image contrast, making it seem as though there is no signal. (b) Mitigation of random pixel flaring by contrast manipulation, as described in Methods section. (c) Equalization of the image after contrast manipulation enables the visualization of more detailed features. (d) The image generated automatically from the detector software, qualitatively similar to the image that we extracted. The white scale bar in (d) is relevant for all images and corresponds to 5 microns.

Supplementary information

Supplementary Video 1

Spatial modulation of free electrons by active control of SPP boundary conditions at high magnification.

Supplementary Video 2

Spatial modulation of free electrons by active control of SPP boundary conditions at low magnification.

Supplementary Video 3

Sample tilt influence on photon-induced spatial modulation of free electrons.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsesses, S., Dahan, R., Wang, K. et al. Tunable photon-induced spatial modulation of free electrons. Nat. Mater. 22, 345–352 (2023). https://doi.org/10.1038/s41563-022-01449-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01449-1

  • Springer Nature Limited

This article is cited by

Navigation