Skip to main content
Log in

Auxiliary-qubit-assisted holonomic quantum gates on superconducting circuits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Embraced with the built-in noise resilience feature for quantum evolutions, holonomic quantum computation provides high fidelity quantum gate operations, and thus has attracted much attention from researchers for stepping forward the development of robust quantum computation. Here in this work, we propose a physically feasible scheme to perform scalable non-adiabatic non-Abelian holonomic quantum computations in a physical system whose Hamiltonian is described by a quantum spin model with tunable coupling strengths. Our scheme is realizable from experimentally achievable Hamiltonian in superconducting-qubit systems and therefore, it is of practical importance in implementing protected quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A 392, 45 (1984)

    MathSciNet  MATH  ADS  Google Scholar 

  2. Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  3. Wilczek, F., Zee, A.: Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 2111 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  4. Anandan, J.: Non-adiabatic non-abelian geometric phase. Phys. Lett. A 133, 171 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  5. Jones J. A., Vedral V., Ekert A.: Castagnoli G, Geometric quantum computation using nuclear magnetic resonance, Nature (London) 403 869 (2000)

  6. Wang, B., Matsumoto, K.: Nonadiabatic conditional geometric phase shift with NMR. Phys. Rev. Lett. 87, 097901 (2001)

    Article  Google Scholar 

  7. Zhu, S.L., Wang, Z.D.: Unconventional geometric quantum computation. Phys. Rev. Lett. 91, 187902 (2003)

    Article  ADS  Google Scholar 

  8. Duan, L.M., Cirac, J.I., Zoller, P.: Geometric manipulation of trapped ions for quantum computation. Science 292, 1695 (2001)

    Article  ADS  Google Scholar 

  9. Zanardi, P., Rasetti, M.: Holonomic quantum computation. Phys. Lett. A 264, 94 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Sjöqvist, E., et al.: Non-adiabatic holonomic quantum computation. New J. Phys. 14, 103035 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Xu, G.F., Zhang, J., Tong, D.M., Sjöqvist, E., Kwek, L.C.: Nonadiabatic holonomic quantum computation in decoherence-free subspaces. Phys. Rev. Lett. 109, 170501 (2012)

    Article  ADS  Google Scholar 

  12. Zhang, J., Kwek, L.C., Sjöqvist, E., Tong, D.M., Zanardi, P.: Quantum computation in noiseless subsystems with fast non-abelian holonomies. Phys. Rev. A 89, 042302 (2014)

    Article  ADS  Google Scholar 

  13. Wang, Y.M., Zhang, J., Wu, C.F., You, J.Q., Romero, G.: Holonomic quantum computation in the ultrastrong-coupling regime of circuit QED. Phys. Rev. A 94, 012328 (2016)

    Article  ADS  Google Scholar 

  14. Liu, B.J., Huang, Z.H., Xue, Z.Y., Zhang, X.D.: Superadiabatic holonomic quantum computation in cavity QED. Phys. Rev. A 95, 062308 (2017)

    Article  ADS  Google Scholar 

  15. Ramberg, N., Sjöqvist, E.: Environment-assisted holonomic quantum Maps. Phys. Rev. Lett. 122, 140501 (2019)

    Article  ADS  Google Scholar 

  16. Abdumalikov, A.A., Jr., et al.: Experimental realization of non-abelian non-adiabatic geometric gates. Nature 496, 482 (2013)

    Article  ADS  Google Scholar 

  17. Xu, Y., et al.: Single-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuit. Phys. Rev. Lett. 121, 110501 (2018)

    Article  ADS  Google Scholar 

  18. Feng, G., Xu, G., Long, G.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)

    Article  ADS  Google Scholar 

  19. Zhu, Z., et al.: Single-loop and composite-loop realization of nonadiabatic holonomic quantum gates in a decoherence-free subspace. Phys. Rev. Applied 12, 024024 (2019)

    Article  ADS  Google Scholar 

  20. Zu, C., et al.: Experimental realization of universal geometric quantum gates with solid-state spins. Nature (London) 514, 72–75 (2014)

    Article  ADS  Google Scholar 

  21. Sekiguchi, Y., Niikura, N., Kuroiwa, R., Kano, H., Kosaka, H.: Optical holonomic single quantum gates with a geometric spin under a zero field. Nat. Photonics 11, 309 (2017)

    Article  ADS  Google Scholar 

  22. Mousolou, V.A., Canali, C.M., Sjöqvist, E.: Universal non-adiabatic holonomic gates in quantum dots and single-molecule magnets. New J. Phys. 16, 013029 (2014)

    Article  MATH  Google Scholar 

  23. Zhang, J., Devitt, S.J., You, J.Q., Nori, F.: Holonomic surface codes for fault-tolerant quantum computation. Phys. Rev. A 97, 022335 (2018)

    Article  ADS  Google Scholar 

  24. You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011)

    Article  ADS  Google Scholar 

  25. Devoret, M.H., Schoelkopf, R.J.: Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013)

    Article  ADS  Google Scholar 

  26. Krantz, P., Kjaergaard, M., Yan, F., Orlando, T.P., Gustavsson, S., Oliver, W.D.: A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019)

  27. Huang, H.-L., Wu, D., Fan, D., Zhu, X.: 2020 Superconducting quantum computing: a review. Sci. China Inf. Sci. 63, 180501 (2020)

    Article  Google Scholar 

  28. Kelly, J., et al.: State preservation by repetitive error detection in a superconducting quantum circuit. Nature (London) 519, 66–69 (2015)

    Article  ADS  Google Scholar 

  29. Ofek, et al.: Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature (London) 536, 441–445 (2016)

    Article  ADS  Google Scholar 

  30. Yoshihara, F., Fuse, T., Ashhab, S., Kakuyanagi, K., Saito, S., Semba, K.: Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys. 13, 44–47 (2017)

    Article  Google Scholar 

  31. Chen, Z., et al.: Single-photon-driven high-order sideband transitions in an ultrastrongly coupled circuit-quantum-electrodynamics system. Phys. Rev. A 96, 012325 (2017)

    Article  ADS  Google Scholar 

  32. Barends, R., et al.: Digital quantum simulation of fermionic models with a superconducting circuit. Nat. Commun. 6, 7654 (2015)

    Article  ADS  Google Scholar 

  33. Mei, F., Chen, G., Tian, L., Zhu, S.-L., Jia, S.: Robust quantum state transfer via topological edge states in superconducting qubit chains. Phys. Rev. A 98, 012331 (2018)

    Article  ADS  Google Scholar 

  34. Li, S., Chen, T., Xue, Z.: Fast holonomic quantum computation on superconducting circuits with optimal control. Adv. Quantum Tech. 3(3), 2000001 (2020)

    Article  Google Scholar 

  35. Chen, T., Zhang, J., Xue, Z.Y.: Nonadiabatic holonomic quantum computation on coupled transmons with ancillaries. Phys. Rev. A 98, 052314 (2018)

    Article  ADS  Google Scholar 

  36. Wu, C.F., Wang, Y.M., Feng, X.L., Chen, J.L.: Holonomic quantum computation in surface codes. Phys. Rev. Applied 13, 014055 (2020)

    Article  ADS  Google Scholar 

  37. Wang, Y.M., Su, Y., Chen, X., Wu, C.F.: Dephasing-protected scalable holonomic quantum computation on a rabi lattice. Phys. Rev. Appl. 14, 044043 (2020)

    Article  ADS  Google Scholar 

  38. You, J.Q., Liu, Y., Sun, C.P., Nori, F.: Persistent single-photon production by tunable on-chip micromaser with a superconducting quantum circuit. Phys. Rev. B 75, 104516 (2007)

    Article  ADS  Google Scholar 

  39. Paaum F. G.: Superconducting Flux Qubits: Quantum Chains and Tunable Qubits Technische Universiteit Delft (2019)

  40. Schwarz, M.J., et al.: Gradiometric flux qubits with a tunable gap. New J. Phys. 15, 045001 (2013)

    Article  ADS  Google Scholar 

  41. Gu X., Chen S., Liu Y.: Topological edge states and pumping in a chain of coupled superconducting qubits, arXiv:1711.06829 [Quant-Ph] (2017)

  42. Mei, F., You, J.-B., Nie, W., Fazio, R., Zhu, S.-L., Kwek, L.C.: Simulation and detection of photonic chern insulators in a one-dimensional circuit-QED lattice. Phys. Rev. A 92, 041805 (2015)

    Article  ADS  Google Scholar 

  43. You, J.Q., Wang, Z.D., Zhang, W., Nori, F.: Encoding a qubit with majorana modes in superconducting circuits. Sci. Rep. 4, 05535 (2014)

    Article  ADS  Google Scholar 

  44. Grajcar, M., Liu, Y., Nori, F., Zagoskin, A.M.: Switchable resonant coupling of flux qubits. Phys. Rev. B 74, 172505 (2006)

    Article  ADS  Google Scholar 

  45. Plourde, B.L.T., et al.: Entangling flux qubits with a bipolar dynamic inductance. Phys. Rev. B 70, 140501 (2004)

    Article  ADS  Google Scholar 

  46. Bertet, P., Harmans, C.J.P.M., Mooij, J.E.: Parametric coupling for superconducting qubits. Phys. Rev. B 73, 064512 (2006)

    Article  ADS  Google Scholar 

  47. Niskanen, A.O., et al.: Quantum coherent tunable coupling of superconducting qubits. Science 316, 723 (2007)

    Article  ADS  Google Scholar 

  48. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  MATH  ADS  Google Scholar 

Download references

Acknowledgements

G.C.W. acknowledges the Fundamental Research Funds for the Central Universities (Grant No. 2412020FZ026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangcheng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The two-qubit gate

Appendix: The two-qubit gate

As presented in the main text, a holonomic two-qubit gate \(U'\) (c.f. Eq. (18)) can be realized with assistance of the auxiliary qubit. It is well-known that concurrence can be used to evaluate the entanglement of two-qubit states. For any pure state \(|{\psi }{{\rangle }_{12}}\) on a pair of quantum systems 1 and 2, the concurrence is defined as [48]

$$\begin{aligned} C({{|\psi \rangle }_{12}})= |{}_{12} \langle \psi | {\tilde{\psi }} \rangle _{12}|, \end{aligned}$$
(21)

with \({{| {\tilde{\psi }} \rangle }_{12}}=\sigma _{y}^{1}\otimes \sigma _{y}^{2}{{\left| {{\psi }^{*}} \right\rangle }_{12}}\) and \({{\left| {{\psi }^{*}} \right\rangle }_{12}}\) is the complex conjugation of the state \({|\psi \rangle }_{12}\). Concurrence ranges from 0 to 1, with \(C =0\) for product state, and \(C=1\) for maximum entangled state. In the following, by calculating the concurrence of the two-qubit state before and after the two-qubit gate \(U'\), we prove that the gate \(U'\) performs an entangling operation. Suppose the initial state of the two-qubit system is an arbitrary product state,

$$\begin{aligned} |\psi {{\rangle }_{12}}={{(a|-\rangle }_{1}}+b|+{{\rangle }_{1}})\otimes {{(c|-\rangle }_{2}}+d|+{{\rangle }_{2}}), \end{aligned}$$
(22)

where the coefficients a, b, c, d are complex values. It can be easily checked that \(C({{|\psi \rangle }_{12}})=0\) for the initial product state \({{|\psi \rangle }_{12}}\). Applying the gate \(U'\) onto the state \(|\psi {{\rangle }_{12}}\), the two-qubit state becomes

$$\begin{aligned} |{\psi }'{{\rangle }_{12}}= & {} {U}'|\psi {{\rangle }_{12}}, \nonumber \\= & {} -\left( ac{{\left| -- \right\rangle }_{12}}+ad{{\left| +- \right\rangle }_{12}}+bc{{\left| -+ \right\rangle }_{12}}-bd{{\left| ++ \right\rangle }_{12}} \right) . \end{aligned}$$
(23)

For our transformed state \(|{\psi }'{{\rangle }_{12}}\), the concurrence is calculated to be

$$\begin{aligned} C{{(|{\psi }'\rangle }_{12}})=4\left| abcd \right| . \end{aligned}$$
(24)

Therefore, as long as the condition of \(abcd\ne 0\) is satisfied, \(C{{(|{\psi }'\rangle }_{12}}) \ne 0\), which indicates that \(|{\psi }'{{\rangle }_{12}}\) is an entangled state and the two-qubit gate \({U}'\) is an entangled gate. For example, suppose the initial product state reads

$$\begin{aligned} |\psi {{\rangle }_{12}}= & {} \frac{1}{\sqrt{2}}\left( {{\left| - \right\rangle }_{1}}+{{\left| + \right\rangle }_{1}} \right) \otimes \frac{1}{\sqrt{2}}\left( {{\left| - \right\rangle }_{2}}+{{\left| + \right\rangle }_{2}} \right) , \nonumber \\= & {} \frac{1}{2}\left( {{\left| -- \right\rangle }_{12}}+{{\left| -+ \right\rangle }_{12}}+{{\left| +- \right\rangle }_{12}}+{{\left| ++ \right\rangle }_{12}} \right) , \end{aligned}$$
(25)

The state after applying the gate \(U'\) is then given by

$$\begin{aligned} |{\psi }'{{\rangle }_{12}}=-\frac{1}{2}\left( {{\left| -- \right\rangle }_{12}}+{{\left| -+ \right\rangle }_{12}}+{{\left| +- \right\rangle }_{12}}-{{\left| ++ \right\rangle }_{12}} \right) . \end{aligned}$$
(26)

It is clear that \(|{\psi }'{{\rangle }_{12}}\) becomes an entangled state.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, G., Zhou, H. et al. Auxiliary-qubit-assisted holonomic quantum gates on superconducting circuits. Quantum Inf Process 21, 10 (2022). https://doi.org/10.1007/s11128-021-03355-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03355-y

Keywords

Navigation