Skip to main content
Log in

Low temperature specific heat of 12442-type KCa2Fe4As4F2 single crystals

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Low-temperature specific heat (SH) is measured for the 12442-type KCa2Fe4As4F2 single crystal under different magnetic fields. A clear SH jump with the height of \(\Delta C/T|_{T_c}\) = 130 mJ moL−1 K−2 is observed at the superconducting transition temperature Tc. It is found that the electronic SH coefficient ∆γ(H) quickly increases when the field is in the low-field region below 3 T and then considerably slows down the increase with a further increase in the field, which indicates a rather strong anisotropy or multi-gap feature with a small minimum in the superconducting gap(s). The temperature-dependent SH data indicate the presence of the T2 term, which supplies further information and supports the picture with a line-nodal gap structure. Moreover, the onset point of the SH transition remains almost unchanged under the field as high as 9 T, which is similar to that observed in cuprates, and places this system in the middle between the BCS limit and the Bose-Einstein condensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Google Scholar 

  2. X. Zhu, F. Han, G. Mu, P. Cheng, B. Shen, B. Zeng, and H. H. Wen, Phys. Rev. B 79, 220512(R) (2009).

    ADS  Google Scholar 

  3. F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, Proc. Natl. Acad. Sci. 105, 14262 (2008).

    ADS  Google Scholar 

  4. M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).

    ADS  Google Scholar 

  5. Z. C. Wang, C. Y. He, S. Q. Wu, Z. T. Tang, Y. Liu, A. Ablimit, C. M. Feng, and G. H. Cao, J. Am. Chem. Soc. 138, 7856 (2016).

    Google Scholar 

  6. Z. Wang, C. He, Z. Tang, S. Wu, and G. Cao, Sci. China Mater. 60, 83 (2017).

    Google Scholar 

  7. Z. C. Wang, C. Y. He, S. Q. Wu, Z. T. Tang, Y. Liu, A. Ablimit, Q. Tao, C. M. Feng, Z. A. Xu, and G. H. Cao, J. Phys.-Condens. Matter 29, 11LT01 (2017), arXiv: 1606.08161.

    Google Scholar 

  8. Z. C. Wang, C. Y. He, S. Q. Wu, Z. T. Tang, Y. Liu, and G. H. Cao, Chem. Mater. 29, 1805 (2017).

    Google Scholar 

  9. S. Q. Wu, Z. C. Wang, C. Y. He, Z. T. Tang, Y. Liu, and G. H. Cao, Phys. Rev. Mater. 1, 044804 (2017).

    Google Scholar 

  10. G. Wang, Z. Wang, and X. Shi, Eurphys. Lett. 116, 37003 (2016).

    ADS  Google Scholar 

  11. J. Ishida, S. Iimura, and H. Hosono, Phys. Rev. B 96, 174522 (2017).

    ADS  Google Scholar 

  12. Z. C. Wang, Y. Liu, S. Q. Wu, Y. T. Shao, Z. Ren, and G. H. Cao, Phys. Rev. B 99, 144501 (2019), arXiv: 1811.05706.

    ADS  Google Scholar 

  13. T. Wang, J. N. Chu, H. Jin, J. X. Feng, L. L. Wang, Y. K. Song, C. Zhang, X. G. Xu, W. Li, Z. J. Li, T. Hu, D. Jiang, W. Peng, X. S. Liu, G. Mu, J. Phys. Chem. C 123, 13925 (2019)

    Google Scholar 

  14. T. Wang, C. Zhang, L. C. Xu, J. H. Wang, S. Jiang, Z. W. Zhu, Z. S. Wang, J. N. Chu, J. X. Feng, L. L. Wang, W. Li, T. Hu, X. S. Liu, and G. Mu, Sci. China-Phys. Mech. Astron. 63, 227412 (2020).

    ADS  Google Scholar 

  15. F. K. K. Kirschner, D. T. Adroja, Z. C. Wang, F. Lang, M. Smidman, P. J. Baker, G. H. Cao, and S. J. Blundell, Phys. Rev. B 97, 060506(R) (2018).

    ADS  Google Scholar 

  16. D. T. Adroja, F. K. K. Kirschner, F. Lang, M. Smidman, A. D. Hillier, Z. C. Wang, G. H. Cao, G. B. G. Stenning, and S. J. Blundell, J. Phys. Soc. Jpn. 87, 124705 (2018).

    ADS  Google Scholar 

  17. M. Smidman, F. K. K. Kirschner, D. T. Adroja, A. D. Hillier, F. Lang, Z. C. Wang, G. H. Cao, and S. J. Blundell, Phys. Rev. B 97, 060509 (2018).

    ADS  Google Scholar 

  18. Y. Y. Huang, Z. C. Wang, Y. J. Yu, J. M. Ni, Q. Li, E. J. Cheng, G. H. Cao, and S. Y. Li, Phys. Rev. B 99, 020502(R) (2019), arXiv: 1811.06379.

    ADS  Google Scholar 

  19. B. Xu, Z. C. Wang, E. Sheveleva, F. Lyzwa, P. Marsik, G. H. Cao, and C. Bernhard, Phys. Rev. B 99, 125119 (2019), arXiv: 1903.06466.

    ADS  Google Scholar 

  20. A. B. Yu, T. Wang, Y. F. Wu, Z. Huang, H. Xiao, G. Mu, and T. Hu, Phys. Rev. B 100, 144505 (2019).

    ADS  Google Scholar 

  21. Wu, W. Hong, C. Dong, X. Wu, Q. Sui, J. Huang, Q. Gao, C. Li, C. Song, H. Luo, C. Yin, Y. Xu, X. Luo, Y. Cai, J. Jia, Q. Wang, Y. Huang, G. Liu, S. Zhang, F. Zhang, F. Yang, Z. Wang, Q. Peng, Z. Xu, X. Qiu, S. Li, H. Luo, J. Hu, L. Zhao, and X. J. Zhou, arXiv: 2001.04082.

  22. H. H. Wen, Z. Y. Liu, F. Zhou, J. Xiong, W. Ti, T. Xiang, S. Komiya, X. Sun, and Y. Ando, Phys. Rev. B 70, 214505 (2004), arXiv: cond-mat/0406741.

    ADS  Google Scholar 

  23. G. Mu, Y. Wang, L. Shan, and H. H. Wen, Phys. Rev. B 76, 064527 (2007), arXiv: 0708.3479.

    ADS  Google Scholar 

  24. G. Mu, H. Luo, Z. Wang, L. Shan, C. Ren, and H. H. Wen, Phys. Rev. B 79, 174501 (2009).

    ADS  Google Scholar 

  25. G. Mu, J. Tang, Y. Tanabe, J. Xu, S. Heguri, and K. Tanigaki, Phys. Rev. B 84, 054505 (2011), arXiv: 1103.1300.

    ADS  Google Scholar 

  26. M. Sigrist, and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).

    ADS  Google Scholar 

  27. N. E. Hussey, Adv. Phys. 51, 1685 (2002).

    ADS  Google Scholar 

  28. J. Chu, T. Wang, Y. Ma, J. Feng, L. Wang, X. Xu, W. Li, G. Mu, and X. Xie, J. Phys.-Condens. Matter 31, 455602 (2019), arXiv: 1907.04031.

    ADS  Google Scholar 

  29. D. J. Singh, and L. Nordstrom, Planewaves, Pseudopotentials, and the LAPW Method (Springer-Verlag, Berlin, 2006).

    Google Scholar 

  30. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, An Aug mented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Technical Univievsity Wien, Austria, 2001).

    Google Scholar 

  31. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    ADS  Google Scholar 

  32. D. J. Singh, and M. H. Du, Phys. Rev. Lett. 100, 237003 (2008), arXiv: 0803.0429.

    ADS  Google Scholar 

  33. D. J. Singh, Phys. Rev. B 78, 094511 (2008), arXiv: 0807.2643.

    ADS  Google Scholar 

  34. A. Tari, The Specific Heat of Matter at Low Temperatures (Imperial College Press, London, 2003).

    Google Scholar 

  35. G. Mu, B. Gao, X. Xie, Y. Tanabe, J. Xu, J. Wu, and K. Tanigaki, Adv. Condens. Matter Phys. 2015, 1 (2015).

    Google Scholar 

  36. J. P. Reid, M. A. Tanatar, X. G. Luo, H. Shakeripour, N. Doiron-Leyraud, N. Ni, S. L. Bud'ko, P. C. Canfield, R. Prozorov, and L. Taillefer, Phys. Rev. B 82, 064501 (2010), arXiv: 1004.3804.

    ADS  Google Scholar 

  37. G. Mu, B. Zeng, P. Cheng, Z.-S. Wang, L. Fang, B. Shen, L. Shan, C. Ren, and H.-H. Wen, Chin. Phys. Lett. 27, 037402 (2010).

    ADS  Google Scholar 

  38. F. Bouquet, R. A. Fisher, N. E. Phillips, D. G. Hinks, and J. D. Jorgensen, Phys. Rev. Lett. 87, 047001 (2001), arXiv: cond-mat/0104206.

    ADS  Google Scholar 

  39. H. H. Wen, G. Mu, H. Luo, H. Yang, L. Shan, C. Ren, P. Cheng, J. Yan, and L. Fang, Phys. Rev. Lett. 103, 067002 (2009), arXiv: 0907.0647.

    ADS  Google Scholar 

  40. A. Junod, K. Q. Wang, T. Tsukamoto, G. Triscone, B. Revaz, E. Walker, and J. Muller, Physica C 229, 209 (1994).

    ADS  Google Scholar 

  41. A. S. Alexandrov, W. H. Beere, V. V. Kabanov, and W. Y. Liang, Phys. Rev. Lett. 79, 1551 (1997).

    ADS  Google Scholar 

  42. A. Junod, A. Erb, and C. Renner, Physica C 317-318, 333 (1999).

    ADS  Google Scholar 

  43. F. Pistolesi, and G. C. Strinati, Phys. Rev. B 49, 6356 (1994).

    ADS  Google Scholar 

  44. S. Kasahara, T. Watashige, T. Hanaguri, Y. Kohsaka, T. Yamashita, Y. Shimoyama, Y. Mizukami, R. Endo, H. Ikeda, K. Aoyama, T. Terashima, S. Uji, T. Wolf, H. von Löhneysen, T. Shibauchi, and Y. Matsuda, Proc. Natl. Acad. Sci. 111, 16309 (2014), arXiv: 1411.1232.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Li or Gang Mu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Chu, J., Feng, J. et al. Low temperature specific heat of 12442-type KCa2Fe4As4F2 single crystals. Sci. China Phys. Mech. Astron. 63, 297412 (2020). https://doi.org/10.1007/s11433-020-1549-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1549-9

Keywords

Navigation