Skip to main content
Log in

Strong Pauli paramagnetic effect in the upper critical field of KCa2Fe4As4F2

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Recently, 12442 system of Fe-based superconductors has attracted considerable attention owing to its unique double-FeAs-layer structure. A steep increase in the in-plane upper critical field with cooling has been observed near the superconducting transition temperature, Tc, in KCa2Fe4As4F2 single crystals. Herein, we report a high-field investigation on upper critical field of this material over a wide temperature range, and both out-of-plane (\((H||{c},\;H_{c2}^c)\)) and in-plane (\((H||{ab},\;H_{c2}^{ab})\)) directions have been measured. A sublinear temperature-dependent behavior is observed for the out-of-plane \(H_{c2}^c\), whereas strong convex curvature with cooling is observed for the in-plane \(H_{c2}^{ab}\). Such behaviors could not be described by the conventional Werthamer-Helfand-Hohenberg (WHH) model. The data analysis based on the WHH model by considering the spin aspects reveals a large Maki parameter α = 9, indicating that the in-plane upper critical field is affected by a very strong Pauli paramagnetic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. C. Xu, X. H. Niu, Z. R. Ye, D. L. Feng, Acta Phys. Sin. 67, 207405 (2018).

    Google Scholar 

  2. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Google Scholar 

  3. X. Zhu, F. Han, G. Mu, P. Cheng, B. Shen, B. Zeng, and H. H. Wen, Phys. Rev. B 79, 220512(R) (2009), arXiv: 0904.1732.

    ADS  Google Scholar 

  4. F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, Proc. Natl. Acad. Sci. USA 105, 14262 (2008).

    ADS  Google Scholar 

  5. M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008), arXiv: 0805.4630.

    ADS  Google Scholar 

  6. Z. C. Wang, C. Y. He, S. Q. Wu, Z. T. Tang, Y. Liu, A. Ablimit, C. M. Feng, and G. H. Cao, J. Am. Chem. Soc. 138, 7856 (2016).

    Google Scholar 

  7. Z. Wang, C. He, Z. Tang, S. Wu, and G. Cao, Sci. China Mater. 60, 83 (2017).

    Google Scholar 

  8. Z. C. Wang, C. Y. He, S. Q. Wu, Z. T. Tang, Y. Liu, A. Ablimit, Q. Tao, C. M. Feng, Z. A. Xu, and G. H. Cao, J. Phys.-Condens. Matter 29, 11LT01 (2017), arXiv: 1606.08161.

    Google Scholar 

  9. Z. C. Wang, C. Y. He, S. Q. Wu, Z. T. Tang, Y. Liu, and G. H. Cao, Chem. Mater. 29, 1805 (2017).

    Google Scholar 

  10. S. Q. Wu, Z. C. Wang, C. Y. He, Z. T. Tang, Y. Liu, and G. H. Cao, Phys. Rev. Mater. 1, 044804 (2017), arXiv: 1704.01488.

    Google Scholar 

  11. G. Wang, Z. Wang, and X. Shi, EPL 116, 37003 (2016).

    ADS  Google Scholar 

  12. J. Ishida, S. Iimura, and H. Hosono, Phys. Rev. B 96, 174522 (2017).

    ADS  Google Scholar 

  13. F. K. K. Kirschner, D. T. Adroja, Z. C. Wang, F. Lang, M. Smidman, P. J. Baker, G. H. Cao, and S. J. Blundell, Phys. Rev. B 97, 060506(R) (2018), arXiv: 1712.04436.

    ADS  Google Scholar 

  14. D. T. Adroja, F. K. K. Kirschner, F. Lang, M. Smidman, A. D. Hillier, Z. C. Wang, G. H. Cao, G. B. G. Stenning, and S. J. Blundell, J. Phys. Soc. Jpn. 87, 124705 (2018), arXiv: 1802.07334.

    ADS  Google Scholar 

  15. B. Wang, Z. C. Wang, K. Ishigaki, K. Matsubayashi, T. Eto, J. Sun, J. G. Cheng, G. H. Cao, and Y. Uwatoko, Phys. Rev. B 99, 014501 (2019).

    ADS  Google Scholar 

  16. Z. C. Wang, Y. Liu, S. Q. Wu, Y. T. Shao, Z. Ren, and G. H. Cao, Phys. Rev. B 99, 144501 (2019), arXiv: 1811.05706.

    ADS  Google Scholar 

  17. Y. Y. Huang, Z. C. Wang, Y. J. Yu, J. M. Ni, Q. Li, E. J. Cheng, G. H. Cao, and S. Y. Li, Phys. Rev. B 99, 020502(R) (2019), arXiv: 1811.06379.

    ADS  Google Scholar 

  18. T. Wang, J. Chu, H. Jin, J. Feng, L. Wang, Y. Song, C. Zhang, X. Xu, W. Li, Z. Li, T. Hu, D. Jiang, W. Peng, X. Liu, and G. Mu, J. Phys. Chem. C 123, 13925 (2019).

    Google Scholar 

  19. K. Maki, Phys. Physique Fizika 1, 127 (1964).

    MathSciNet  Google Scholar 

  20. K. Maki, Phys. Rev. 148, 362 (1966).

    ADS  Google Scholar 

  21. E. Helfand, and N. R. Werthamer, Phys. Rev. 147, 288 (1966).

    ADS  Google Scholar 

  22. N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).

    ADS  Google Scholar 

  23. H. Q. Yuan, J. Singleton, F. F. Balakirev, S. A. Baily, G. F. Chen, J. L. Luo, and N. L. Wang, Nature 457, 565 (2009), arXiv: 0807.3137.

    ADS  Google Scholar 

  24. M. Fang, J. Yang, F. F. Balakirev, Y. Kohama, J. Singleton, B. Qian, Z. Q. Mao, H. Wang, and H. Q. Yuan, Phys. Rev. B 81, 020509 (2010), arXiv: 0909.5328.

    ADS  Google Scholar 

  25. S. Khim, J. W. Kim, E. S. Choi, Y. Bang, M. Nohara, H. Takagi, and K. H. Kim, Phys. Rev. B 81, 184511 (2010), arXiv: 1001.4017.

    ADS  Google Scholar 

  26. S. Khim, B. Lee, J. W. Kim, E. S. Choi, G. R. Stewart, and K. H. Kim, Phys. Rev. B 84, 104502 (2011), arXiv: 1103.3582.

    ADS  Google Scholar 

  27. X. Xing, W. Zhou, J. Wang, Z. Zhu, Y. Zhang, N. Zhou, B. Qian, X. Xu, and Z. Shi, Sci. Rep. 7, 45943 (2017).

    ADS  Google Scholar 

  28. Z. Wang, J. Yuan, J. Wosnitza, H. Zhou, Y. Huang, K. Jin, F. Zhou, X. Dong, and Z. Zhao, J. Phys.-Condens. Matter 29, 025701 (2017).

    ADS  Google Scholar 

  29. Y. H. Ma, G. Mu, T. Hu, Z. W. Zhu, Z. J. Li, W. Li, Q. C. Ji, X. Zhang, L. L. Wang, and X. M. Xie, Sci. China-Phys. Mech. Astron. 61, 127408 (2018).

    ADS  Google Scholar 

  30. K. Kihou, T. Saito, S. Ishida, M. Nakajima, Y. Tomioka, H. Fukazawa, Y. Kohori, T. Ito, S. Uchida, A. Iyo, C. H. Lee, and H. Eisaki, J. Phys. Soc. Jpn. 79, 124713 (2010), arXiv: 1009.4002.

    ADS  Google Scholar 

  31. J. Jaroszynski, F. Hunte, L. Balicas, Y. Jo, I. Raicevic, A. Gurevich, D. C. Larbalestier, F. F. Balakirev, L. Fang, P. Cheng, Y. Jia, and H. H. Wen, Phys. Rev. B 78, 174523 (2008), arXiv: 0810.2469.

    ADS  Google Scholar 

  32. H. S. Lee, M. Bartkowiak, J. H. Park, J. Y. Lee, J. Y. Kim, N. H. Sung, B. K. Cho, C. U. Jung, J. S. Kim, and H. J. Lee, Phys. Rev. B 80, 144512 (2009), arXiv: 0908.1267.

    ADS  Google Scholar 

  33. W. K. Kwok, S. Fleshier, U. Welp, V. M. Vinokur, J. Downey, G. W. Crabtree, and M. M. Miller, Phys. Rev. Lett. 69, 3370 (1992).

    ADS  Google Scholar 

  34. H. Safar, P. L. Gammel, D. A. Huse, D. J. Bishop, J. P. Rice, and D. M. Ginsberg, Phys. Rev. Lett. 69, 824 (1992).

    ADS  Google Scholar 

  35. G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

    ADS  Google Scholar 

  36. A. Pisoni, S. Katrych, P. Szirmai, B. Náfrádi, R. Gaál, J. Karpinski, and L. Forro, J. Phys.-Condens. Matter 28, 115701 (2016), arXiv: 1612.05792.

    ADS  Google Scholar 

  37. A. Gurevich, Phys. Rev. B 67, 184515 (2003).

    ADS  Google Scholar 

  38. A. Gurevich, Physica C-Supercond. 456, 160 (2007).

    ADS  Google Scholar 

  39. F. Hunte, J. Jaroszynski, A. Gurevich, D. C. Larbalestier, R. Jin, A. S. Sefat, M. A. McGuire, B. C. Sales, D. K. Christen, and D. Mandrus, Nature 453, 903 (2008).

    ADS  Google Scholar 

  40. M. Kano, Y. Kohama, D. Graf, F. Balakirev, A. S. Sefat, M. A. Mcguire, B. C. Sales, D. Mandrus, and S. W. Tozer, J. Phys. Soc. Jpn. 78, 084719 (2009), arXiv: 0904.1418.

    ADS  Google Scholar 

  41. T. Terashima, M. Kimata, H. Satsukawa, A. Harada, K. Hazama, S. Uji, H. Harima, G. F. Chen, J. L. Luo, and N. L. Wang, J. Phys. Soc. Jpn. 78, 063702 (2009), arXiv: 0903.3783.

    ADS  Google Scholar 

  42. G. Fuchs, S. L. Drechsler, N. Kozlova, G. Behr, A. Köhler, J. Werner, K. Nenkov, R. Klingeler, J. Hamann-Borrero, C. Hess, A. Kondrat, M. Grobosch, A. Narduzzo, M. Knupfer, J. Freudenberger, B. Büchner, and L. Schultz, Phys. Rev. Lett. 101, 237003 (2008), arXiv: 0806.0781.

    ADS  Google Scholar 

  43. T. Wang, J. N. Chu, J. X. Feng, L. L. Wang, X. G. Xu, W. Li, H. H. Wen, X. S. Liu, G. Mu, arXiv: 1903.09447.

  44. G. Mu, H. Luo, Z. Wang, L. Shan, C. Ren, and H. H. Wen, Phys. Rev. B 79, 174501 (2009).

    ADS  Google Scholar 

  45. Y. Ma, K. Hu, Q. Ji, B. Gao, H. Zhang, G. Mu, F. Huang, and X. Xie, J. Cryst. Growth 451, 161 (2016), arXiv: 1605.04642.

    ADS  Google Scholar 

  46. J. Chu, T. Wang, Y. Ma, J. Feng, L. Wang, X. Xu, W. Li, G. Mu, and X. Xie, J. Phys.-Condens. Matter 31, 455602 (2019), arXiv: 1907.04031.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Mu.

Additional information

This work was supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2015187), the National Natural Science Foundation of China (Grant Nos. 11204338, 11704385, and 11874359), and the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB04040300). We thank Dr. X.Z. Xing for the help when handling the WHH model.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhang, C., Xu, L. et al. Strong Pauli paramagnetic effect in the upper critical field of KCa2Fe4As4F2. Sci. China Phys. Mech. Astron. 63, 227412 (2020). https://doi.org/10.1007/s11433-019-1441-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1441-4

Keywords

Navigation