Skip to main content
Log in

Can non-standard recombination resolve the Hubble tension?

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The inconsistent Hubble constant values derived from cosmic microwave background (CMB) observations and from local distance-ladder measurements may suggest new physics beyond the standard ACDM paradigm. It has been found in earlier studies that, at least phenomenologically, non-standard recombination histories can reduce the ≳ 4δ Hubble tension to ∼ 2δ. Following this path, we vary physical and phenomenological parameters in RECFAST, the standard code to compute ionization history of the universe, to explore possible physics beyond standard recombination. We find that the CMB constraint on the Hubble constant is sensitive to the hydrogen ionization energy and 2s → 1s two-photon decay rate, both of which are atomic constants, and is insensitive to other details of recombination. Thus, the Hubble tension is very robust against perturbations of recombination history, unless exotic physics modifies the atomic constants during the recombination epoch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Akrami, et al. (Planck Collaboration), arXiv: 1807.06205.

  2. N. Aghanim, et al. (Planck Collaboration), arXiv: 1807.06209.

  3. A. G. Riess, L. M. Macri, S. L. Hoffmann, D. Scolnic, S. Casertano, A. V. Filippenko, B. E. Tucker, M. J. Reid, D. O. Jones, J. M. Silverman, R. Chornock, P. Challis, W. Yuan, P. J. Brown, and R. J. Foley, Astrophys. J. 826, 56 (2016).

    Article  ADS  Google Scholar 

  4. A. G. Riess, S. Casertano, W. Yuan, L. Macri, J. Anderson, J. W. MacKenty, J. B. Bowers, K. I. Clubb, A. V. Filippenko, D. O. Jones, and B. E. Tucker, Astrophys. J. 855, 136 (2018).

    Article  ADS  Google Scholar 

  5. A. G. Riess, S. Casertano, W. Yuan, L. Macri, B. Bucciarelli, M. G. Lattanzi, J. W. MacKenty, J. B. Bowers, W. K. Zheng, A. V. Filippenko, C. Huang, and R. I. Anderson, Astrophys. J. 861, 126 (2018).

    Article  ADS  Google Scholar 

  6. A. G. Riess, S. Casertano, W. Yuan, L. M. Macri, and D. Scolnic, Astrophys. J. 876, 85 (2019).

    Article  ADS  Google Scholar 

  7. K. C. Wong, S. H. Suyu, G. C.-F. Chen, C. E. Rusu, M. Millon, D. Sluse, V. Bonvin, C. D. Fassnacht, S. Taubenberger, M. W. Auger, S. Birrer, J. H. H. Chan, F. Courbin, S. Hilbert, O. Tihhonova, T. Treu, A. Agnello, X. Ding, I. Jee, E. Komatsu, A. J. Shajib, A. Sonnenfeld, R. D. Blandford, L. V. E. Koopmans, P. J. Marshall, and G. Meylan, arXiv: 1907.04869.

  8. A. J. Shajib, S. Birrer, T. Treu, A. Agnello, E. J. Buckley-Geer, J. H. H. Chan, L. Christensen, C. Lemon, H. Lin, M. Millon, J. Poh, C. E. Rusu, D. Sluse, C. Spiniello, G. C.-F. Chen, T. Collett, F. Courbin, C. D. Fassnacht, J. Frieman, A. Galan, D. Gilman, A. More, T. Anguita, M. W. Auger, V. Bonvin, R. McMahon, G. Meylan, K. C. Wong, T. M. C. Abbott, J. Annis, S. Avila, K. Bechtol, D. Brooks, D. Brout, D. L. Burke, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, F. J. Castander, M. Costanzi, L. N. da Costa, J. De Vicente, S. Desai, J. P. Dietrich, P. Doel, A. Drlica-Wagner, A. E. Evrard, D. A. Finley, B. Flaugher, P. Fosalba, J. García-Bellido, D. W. Gerdes, D. Gruen, R. A. Gruendl, J. Gschwend, G. Gutierrez, D. L. Hollowood, K. Honscheid, D. Huterer, D. J. James, T. Jeltema, E. Krause, N. Kuropatkin, T. S. Li, M. Lima, N. MacCrann, M. A. G. Maia, J. L. Marshall, P. Melchior, R. Miquel, R. L. C. Ogando, A. Palmese, F. Paz-Chinchón, A. A. Plazas, A. K. Romer, A. Roodman, M. Sako, E. Sanchez, B. Santiago, V. Scarpine, M. Schubnell, D. Scolnic, S. Serrano, I. Sevilla-Noarbe, M. Smith, M. Soares-Santos, E. Suchyta, G. Tarle, D. Thomas, A. R. Walker, and Y. Zhang, arXiv: 1910.06306.

  9. G. Efstathiou, Mon. Not. R. Astron. Soc. 440, 1138 (2014).

    Article  ADS  Google Scholar 

  10. G. E. Addison, Y. Huang, D. J. Watts, C. L. Bennett, M. Halpern, G. Hinshaw, and J. L. Weiland, Astrophys. J. 818, 132 (2016).

    Article  ADS  Google Scholar 

  11. H. Miao, and Z. Huang, Astrophys. J. 868, 20 (2018).

    Article  ADS  Google Scholar 

  12. M. X. Lin, M. Raveri, and W. Hu, Phys. Rev. D 99, 043514 (2019).

    Article  ADS  Google Scholar 

  13. M. X. Lin, G. Benevento, W. Hu, and M. Raveri, Phys. Rev. D 100, 063542 (2019).

    Article  ADS  Google Scholar 

  14. J. Sola, A. Gomez-Valent, J. de Cruz Perez, and C. Moreno-Pulido, arXiv: 1909.02554.

  15. M. Rossi, M. Ballardini, M. Braglia, F. Finelli, D. Paoletti, A. A. Starobinsky, and C. Umiltà, arXiv: 1906.10218.

  16. T. Karwal, and M. Kamionkowski, Phys. Rev. D 94, 103523 (2016).

    Article  ADS  Google Scholar 

  17. S. Alexander, and E. McDonough, Phys. Lett. B 797, 134830 (2019).

    Article  Google Scholar 

  18. V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski, Phys. Rev. Lett. 122, 221301 (2019).

    Article  ADS  Google Scholar 

  19. E. Di Valentino, A. Melchiorri, and O. Mena, Phys. Rev. D 96, 043503 (2017).

    Article  ADS  Google Scholar 

  20. W. Yang, S. Pan, E. D. Valentino, R. C. Nunes, S. Vagnozzi, and D. F. Mota, J. Cosmol. Astropart. Phys. 2018(09), 019 (2018), arXiv: 1805.08252.

    Article  Google Scholar 

  21. W. Yang, A. Mukherjee, E. Di Valentino, and S. Pan, Phys. Rev. D 98, 123527 (2018).

    Article  ADS  Google Scholar 

  22. E. Di Valentino, C. Bœhm, E. Hivon, and F. R. Bouchet, Phys. Rev. D 97, 043513 (2018).

    Article  ADS  Google Scholar 

  23. A. Bhattacharyya, U. Alam, K. L. Pandey, S. Das, and S. Pal, Astrophys. J. 876, 143 (2019).

    Article  ADS  Google Scholar 

  24. E. Di Valentino, A. Melchiorri, O. Mena, and S. Vagnozzi, arXiv: 1908.04281.

  25. P. Agrawal, F.-Y. Cyr-Racine, D. Pinner, and L. Randall, arXiv: 1904.01016.

  26. P. Agrawal, G. Obied, and C. Vafa, arXiv: 1906.08261.

  27. F. D’Eramo, R. Z. Ferreira, A. Notari, and J. L. Bernal, J. Cosmol. Astropart. Phys. 2018(11), 014 (2018), arXiv: 1808.07430.

    Article  Google Scholar 

  28. M. Benetti, L. L. Graef, and J. S. Alcaniz, J. Cosmol. Astropart. Phys. 2018(07), 066 (2018), arXiv: 1712.00677.

    Article  Google Scholar 

  29. L. L. Graef, M. Benetti, and J. S. Alcaniz, Phys. Rev. D 99, 043519 (2019).

    Article  ADS  Google Scholar 

  30. S. Carneiro, P. C. de Holanda, C. Pigozzo, and F. Sobreira, Phys. Rev. D 100, 023505 (2019).

    Article  ADS  Google Scholar 

  31. X. Zhang, and Q.-G. Huang, arXiv: 1911.09439.

  32. K. Bolejko, Phys. Rev. D 97, 103529 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  33. S. Adhikari, and D. Huterer, arXiv: 1905.02278.

  34. M. Liu, and Z. Huang, arXiv: 1910.05670.

  35. M. Farhang, J. R. Bond, and J. Chluba, Astrophys. J. 752, 88 (2012).

    Article  ADS  Google Scholar 

  36. M. Farhang, J. R. Bond, J. Chluba, and E. R. Switzer, Astrophys. J. 764, 137 (2013).

    Article  ADS  Google Scholar 

  37. P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 594, A13 (2016).

    Article  Google Scholar 

  38. C.-T. Chiang, and A. Slosar, arXiv: 1811.03624.

  39. P. J. E. Peebles, Astrophys. J. 153, 1 (1968).

    Article  ADS  Google Scholar 

  40. S. Seager, D. D. Sasselov, and D. Scott, Astrophys. J. 523, L1 (1999).

    Article  ADS  Google Scholar 

  41. J. Chluba, and R. M. Thomas, Mon. Not. R. Astron. Soc. 412, 748 (2010), arXiv: 1010.3631.

    ADS  Google Scholar 

  42. S. Seager, D. D. Sasselov, and D. Scott, Astrophys. J. Suppl. S 128, 407 (2000).

    Article  ADS  Google Scholar 

  43. W. Y. Wong, A. Moss, and D. Scott, Mon. Not. R. Astron. Soc. 386, 1023 (2008).

    Article  ADS  Google Scholar 

  44. D. Scott, and A. Moss, Mon. Not. R. Astron. Soc. 397, 445 (2009).

    Article  ADS  Google Scholar 

  45. A. Lewis, and S. Bridle, Phys. Rev. D 66, 103511 (2002), arXiv: astro-ph/0205436.

    Article  ADS  Google Scholar 

  46. N. Aghanim, et al. (Planck Collaboration), arXiv: 1907.12875.

  47. R. H. Becker, X. Fan, R. L. White, M. A. Strauss, V. K. Narayanan, R. H. Lupton, J. E. Gunn, J. Annis, N. A. Bahcall, J. Brinkmann, A. J. Connolly, I. Csabai, P. C. Czarapata, M. Doi, T. M. Heckman, G. S. Hennessy, Ž. Ivežić, G. R. Knapp, D. Q. Lamb, T. A. McKay, J. A. Munn, T. Nash, R. Nichol, J. R. Pier, G. T. Richards, D. P. Schneider, C. Stoughton, A. S. Szalay, A. R. Thakar, and D. G. York, Astron. J. 122, 2850 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiQi Huang.

Additional information

This work was supported by the Sun Yat-sen University Starting Grant for Research (Grant No. 71000-18841232).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Huang, Z., Luo, X. et al. Can non-standard recombination resolve the Hubble tension?. Sci. China Phys. Mech. Astron. 63, 290405 (2020). https://doi.org/10.1007/s11433-019-1509-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1509-5

Keywords

Navigation