Skip to main content
Log in

Influence of nuclear physics inputs and astrophysical conditions on r-process

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The rapid neutron-capture process (r-process) is one of the main mechanisms to explain the origin of heavy elements in the universe. Although the past decades have seen great progress in understanding this process, the related nuclear physics inputs to r-process models include significant uncertainty. In this study, ten nuclear mass models, including macroscopic, macroscopic-microscopic, and microscopic models, are used to calculate the β-decay rates and neutron-capture rates of the neutron-rich isotopes for the r-process simulations occurring in three classes of astrophysical conditions. The final r-process abundances include uncertainties introduced by the nuclear mass model mainly through the variation of neutron-capture rates, whereas the uncertainties of β-decay rates make a relatively small contribution. The uncertainties in different astrophysical scenarios are also investigated, and are found to be connected to the diverse groups of nuclei produced during nucleosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).

    Article  ADS  Google Scholar 

  2. A. G. W. Cameron, Chalk River Report, Atomic Energy of Canada, Ltd., CRL-41 (1957).

    Google Scholar 

  3. Y. Z. Qian, Prog. Part. Nucl. Phys. 50, 153 (2003).

    Article  ADS  Google Scholar 

  4. M. Arnould, S. Goriely, and K. Takahashi, Phys. Rep. 450, 97 (2007), arXiv: 0705.4512.

    Article  ADS  Google Scholar 

  5. F. K. Thielemann, A. Arcones, R. Kappeli, M. Liebendörfer, T. Rauscher, C. Winteler, C. Fröhlich, I. Dillmann, T. Fischer, G. Martinez-Pinedo, K. Langanke, K. Farouqi, K. L. Kratz, I. Panov, and I. K. Korneev, Prog. Particle Nucl. Phys. 66, 346 (2011).

    Article  ADS  Google Scholar 

  6. Y. Z. Qian, Sci. China-Phys. Mech. Astron. 61, 049501 (2018), arXiv: 1801.09554.

    Article  ADS  Google Scholar 

  7. M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, Chin. Phys.. 36, 1603 (2012).

    Article  Google Scholar 

  8. B. Franzke, H. Geissel, and G. Münzenberg, Mass Spectrom. Rev. 27, 428 (2008).

    Article  ADS  Google Scholar 

  9. B. H. Sun, Y. A. Litvinov, I. Tanihata, and Y. H. Zhang, Front. Phys. 10, 102102 (2015).

    Article  Google Scholar 

  10. M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, Chin. Phys.. 41, 030003 (2017).

    Article  ADS  Google Scholar 

  11. C. F. Weizsacker, Z. Phys. 96, 431 (1935).

    Article  ADS  Google Scholar 

  12. H. A. Bethe, and R. F. Bacher, Rev. Mod. Phys. 8, 82 (1936).

    Article  ADS  Google Scholar 

  13. P. Moller, W. D. Myers, H. Sagawa, and S. Yoshida, Phys. Rev. Lett. 108, 052501 (2012).

    Article  ADS  Google Scholar 

  14. N. Wang, M. Liu, X. Wu, and J. Meng, Phys. Lett.. 734, 215 (2014), arXiv: 1405.2616.

    Article  Google Scholar 

  15. S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev.. 93, 034337 (2016).

    ADS  Google Scholar 

  16. J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Part. Nucl. Phys. 57 470 (2006).

    Google Scholar 

  17. W. Long, J. Meng, N. V. Giai, and S. G. Zhou, Phys. Rev.. 69, 034319 (2004).

    Article  ADS  Google Scholar 

  18. P. Jiang, Z. M. Niu, Y. F. Niu, and W. H. Long, Phys. Rev.. 98, 064323 (2018).

    Google Scholar 

  19. L. Geng, H. Toki, and J. Meng, Prog. Theor. Phys. 113, 785 (2005).

    Article  ADS  Google Scholar 

  20. P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev.. 82, 054319 (2010), arXiv: 1002.1789.

    ADS  Google Scholar 

  21. X. M. Hua, T. H. Heng, Z. M. Niu, B. H. Sun, and J. Y. Guo, Sci. China-Phys. Mech. Astron. 55, 2414 (2012).

    Article  ADS  Google Scholar 

  22. Z. M. Niu, Y. F. Niu, H. Z. Liang, W. H. Long, and J. Meng, Phys. Rev.. 95, 044301 (2017), arXiv: 1604.07011.

    ADS  Google Scholar 

  23. X. W. Xia, Y. Lim, P. W. Zhao, H. Z. Liang, X. Y. Qu, Y. Chen, H. Liu, L. F. Zhang, S. Q. Zhang, Y. Kim, and J. Meng, At. Data Nucl. Data Table. 121, 1 (2018).

    Article  ADS  Google Scholar 

  24. Z. M. Niu, Y. F. Niu, Q. Liu, H. Z. Liang, and J. Y. Guo, Phys. Rev. C 87, 051303(R) (2013), arXiv: 1305.5387.

    Google Scholar 

  25. Z. Y. Wang, Y. F. Niu, Z. M. Niu, and J. Y. Guo, J. Phys. G-Nucl. Part. Phys. 43, 045108 (2016), arXiv: 1503.01222.

    Article  ADS  Google Scholar 

  26. B. Sun, F. Montes, L. S. Geng, H. Geissel, Y. A. Litvinov, and J. Meng, Phys. Rev.. 78, 025806 (2008), arXiv: 0710.2332.

    ADS  Google Scholar 

  27. B. H. Sun, and J. Meng, Chin. Phys. Lett. 25, 2429 (2008), arXiv: 0807.2509.

    Article  ADS  Google Scholar 

  28. Z. Niu, B. Sun, and J. Meng, Phys. Rev.. 80, 065806 (2009), arXiv: 0912.1669.

    Article  Google Scholar 

  29. J. Meng, Z. M. Niu, H. Z. Liang, and B. H. Sun, Sci. China-Phys. Mech. Astron. 54, 119 (2011).

    Article  ADS  Google Scholar 

  30. J. Meng, and H. Schatz, Phys. Scr. T152, 014010 (2013).

    Google Scholar 

  31. D. Martin, A. Arcones, W. Nazarewicz, and E. Olsen, Phys. Rev. Lett. 116, 121101 (2016), arXiv: 1512.03158.

    Article  ADS  Google Scholar 

  32. M. R. Mumpower, R. Surman, G. C. McLaughlin, and A. Aprahamian, Prog. Particle Nucl. Phys. 86, 86 (2016), arXiv: 1508.07352.

    Article  ADS  Google Scholar 

  33. P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev.. 82, 054319 (2010), arXiv: 1002.1789.

    ADS  Google Scholar 

  34. N. Wang, and M. Liu, Phys. Rev. C 84, 051303(R) (2011), arXiv: 1111.0354.

    Google Scholar 

  35. Z. M. Niu, Z. L. Zhu, Y. F. Niu, B. H. Sun, T. H. Heng, and J. Y. Guo, Phys. Rev.. 88, 024325 (2013), arXiv: 1309.0407.

    Article  ADS  Google Scholar 

  36. J. S. Zheng, N. Y. Wang, Z. Y. Wang, Z. M. Niu, Y. F. Niu, and B. Sun, Phys. Rev.. 90, 014303 (2014).

    Article  ADS  Google Scholar 

  37. Z. M. Niu, B. H. Sun, H. Z. Liang, Y. F. Niu, and J. Y. Guo, Phys. Rev.. 94, 054315 (2016), arXiv: 1607.02075.

    Article  ADS  Google Scholar 

  38. Z. Niu, H. Liang, B. Sun, Y. Niu, J. Guo, and J. Meng, Sci. Bull. 63, 759 (2018).

    Article  Google Scholar 

  39. R. Utama, J. Piekarewicz, and H. B. Prosper, Phys. Rev.. 93, 014311 (2016), arXiv: 1508.06263.

    ADS  Google Scholar 

  40. H. F. Zhang, L. H. Wang, J. P. Yin, P. H. Chen, and H. F. Zhang, J. Phys. G-Nucl. Part. Phys. 44, 045110 (2017).

    Article  ADS  Google Scholar 

  41. Z. M. Niu, and H. Z. Liang, Phys. Lett.. 778, 48 (2018), arXiv: 1801.04411.

    Article  Google Scholar 

  42. D. Argast, M. Samland, F. K. Thielemann, and Y. Z. Qian, Astron. Astrophys. 416, 997 (2004).

    Article  ADS  Google Scholar 

  43. X. D. Xu, B. Sun, Z. M. Niu, Z. Li, Y. Z. Qian, and J. Meng, Phys. Rev.. 87, 015805 (2013), arXiv: 1208.2341.

    ADS  Google Scholar 

  44. S. E. Woosley, J. R. Wilson, G. J. Mathews, R. D. Hoffman, and B. S. Meyer, Astrophys. J. 433, 229 (1994).

    Article  ADS  Google Scholar 

  45. Y. Z. Qian, and S. E. Woosley, Astrophys. J. 471, 331 (1996).

    Article  ADS  Google Scholar 

  46. R. D. Hoffman, S. E. Woosley, and Y. Z. Qian, Astrophys. J. 482, 951 (1997).

    Article  ADS  Google Scholar 

  47. A. Arcones, and G. Martinez-Pinedo, Phys. Rev.. 83, 045809 (2011), arXiv: 1008.3890.

    ADS  Google Scholar 

  48. A. Arcones, and F. K. Thielemann, J. Phys. G-Nucl. Part. Phys. 40, 013201 (2013), arXiv: 1207.2527.

    Article  ADS  Google Scholar 

  49. C. Winteler, R. Kappeli, A. Perego, A. Arcones, N. Vasset, N. Nishimura, M. Liebendörfer, and F. K. Thielemann, Astrophys. J. 750, L22 (2012), arXiv: 1203.0616.

    Google Scholar 

  50. N. Nishimura, T. Takiwaki, and F. K. Thielemann, Astrophys. J. 810, 109 (2015), arXiv: 1501.06567.

    Article  ADS  Google Scholar 

  51. J. M. Lattimer, and D. N. Schramm, Astrophys. J. 192, L145 (1974).

    Google Scholar 

  52. C. Freiburghaus, S. Rosswog, and F. K. Thielemann, Astrophys. J. 525, L121 (1999).

    Google Scholar 

  53. B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 161101 (2017), arXiv: 1710.05832.

    Article  ADS  Google Scholar 

  54. B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Astrophys. J. 848, L13 (2017), arXiv: 1710.05834.

    Google Scholar 

  55. A. Goldstein, P. Veres, E. Burns, M. S. Briggs, R. Hamburg, D. Kocevski, C. A. Wilson-Hodge, R. D. Preece, S. Poolakkil, O. J. Roberts, C. M. Hui, V. Connaughton, J. Racusin, A. Kienlin, T. D. Canton, N. Christensen, T. Littenberg, K. Siellez, L. Blackburn, J. Broida, E. Bissaldi, W. H. Cleveland, M. H. Gibby, M. M. Giles, R. M. Kippen, S. McBreen, J. McEnery, C. A. Meegan, W. S. Paciesas, and M. Stanbro, Astrophys. J. 848, L14 (2017), arXiv: 1710.05446.

    Google Scholar 

  56. V. Savchenko, C. Ferrigno, E. Kuulkers, A. Bazzano, E. Bozzo, S. Brandt, J. Chenevez, T. J. L. Courvoisier, R. Diehl, A. Domingo, L. Hanlon, E. Jourdain, A. von Kienlin, P. Laurent, F. Lebrun, A. Lutovinov, A. Martin-Carrillo, S. Mereghetti, L. Natalucci, J. Rodi, J. P. Roques, R. Sunyaev, and P. Ubertini, Astrophys. J. 848, L15 (2017), arXiv: 1710.05449.

    Google Scholar 

  57. J. Barnes, and D. Kasen, Astrophys. J. 775, 18 (2013), arXiv: 1303.5787.

    Article  ADS  Google Scholar 

  58. J. Barnes, D. Kasen, M. R. Wu, and G. Martsinez-Pinedo, Astrophys. J. 829, 110 (2016), arXiv: 1605.07218.

    Article  ADS  Google Scholar 

  59. D. Kasen, B. Metzger, J. Barnes, E. Quataert, and E. Ramirez-Ruiz, Natur. 192, 80 (2017), arXiv: 1710.05463.

    Article  ADS  Google Scholar 

  60. B. Ctote, K. Belczynski, C. L. Fryer, C. Ritter, A. Paul, B. Wehmeyer, and B. W. O’Shea, Astrophys. J. 836, 230 (2017), arXiv: 1610.02405.

    Article  ADS  Google Scholar 

  61. Y. J. Zhang, Y. S. Chen, J. Y. Guo, S. Q. Hou, Z. H. Li, and J. R. Shi, Sci. China-Phys. Mech. Astron. 56, 859 (2013).

    Article  ADS  Google Scholar 

  62. G. Lorusso, S. Nishimura, Z. Y. Xu, A. Jungclaus, Y. Shimizu, G. S. Simpson, P. A. Söderström, H. Watanabe, F. Browne, P. Doornenbal, G. Gey, H. S. Jung, B. Meyer, T. Sumikama, J. Taprogge, Z. Vajta, J. Wu, H. Baba, G. Benzoni, K. Y. Chae, F. C. L. Crespi, N. Fukuda, R. Gernhauser, N. Inabe, T. Isobe, T. Kajino, D. Kameda, G. D. Kim, Y. K. Kim, I. Kojouharov, F. G. Kondev, T. Kubo, N. Kurz, Y. K. Kwon, G. J. Lane, Z. Li, A. Montaner-Pizas, K. Moschner, F. Naqvi, M. Niikura, H. Nishibata, A. Odahara, R. Orlandi, Z. Patel, Z. Podolyask, H. Sakurai, H. Schaffner, P. Schury, S. Shibagaki, K. Steiger, H. Suzuki, H. Takeda, A. Wendt, A. Yagi, and K. Yoshinaga, Phys. Rev. Lett. 114, 192501 (2015).

    Article  ADS  Google Scholar 

  63. T. Kajino, and G. J. Mathews, Rep. Prog. Phys. 80, 084901 (2017), arXiv: 1610.07929.

    Article  ADS  Google Scholar 

  64. W. R. Hix, and F. K. Thielemann, J. Comput. Appl. Math. 109, 321 (1999).

    Article  ADS  Google Scholar 

  65. C. Winteler, Light Element Production in the Big Bang and the Synthesis of Heavy Elements in 3D MHD Jets from Core-collapse Supernovae, Dissertation for the Doctoral Degree. (University of Basel, Basel, 2012).

    Google Scholar 

  66. S. Goriely, AIP Conf. Proc. 529, 287 (2000)

    ADS  Google Scholar 

  67. J. M. Pearson, R. C. Nayak, and S. Goriely, Phys. Lett.. 387, 455 (1996).

    Article  Google Scholar 

  68. H. Koura, T. Tachibana, M. Uno, and M. Yamada, Prog. Theor. Phys. 113, 305 (2005).

    Article  ADS  Google Scholar 

  69. M. W. Kirson, Nucl. Phys.. 798, 29 (2008).

    Article  Google Scholar 

  70. A. Bhagwat, Phys. Rev.. 90, 064306 (2014).

    Google Scholar 

  71. J. Duflo, and A. P. Zuker, Phys. Rev. C 52, R23 (1995).

    Google Scholar 

  72. Z. M. Niu, Y. F. Niu, H. Z. Liang, W. H. Long, T. Niksic, D. Vretenar, and J. Meng, Phys. Lett.. 723, 172 (2013), arXiv: 1210.0680.

    Article  Google Scholar 

  73. P. Moller, B. Pfeiffer, and K. L. Kratz, Phys. Rev.. 67, 055802 (2003).

    Article  ADS  Google Scholar 

  74. T. Marketin, L. Huther, and G. Martsinez-Pinedo, Phys. Rev.. 93, 025805 (2016), arXiv: 1507.07442.

    Google Scholar 

  75. Y. Zhou, Z. H. Li, Y. B. Wang, Y. S. Chen, B. Guo, J. Su, Y. J. Li, S. Q. Yan, X. Y. Li, Z. Y. Han, Y. P. Shen, L. Gan, S. Zeng, G. Lian, and W. P. Liu, Sci. China-Phys. Mech. Astron. 60, 082012 (2017).

    Article  ADS  Google Scholar 

  76. J. A. Holmes, S. E. Woosley, W. A. Fowler, and B. A. Zimmerman, Atom. Data Nucl. Data Table. 18, 305 (1976).

    Article  ADS  Google Scholar 

  77. A. J. Koning, S. Hilaire, and S. Goriely, TALYS 1.9 user manual, http://www.talys.eu/fileaddin/talys/user/dors/talys1.9.pdf.

  78. T. Kodama, and K. Takahashi, Nucl. Phys.. 239, 489 (1975).

    Article  Google Scholar 

  79. K. H. Schmidt, and B. Jurado, Phys. Rev. Lett. 104, 212501 (2010), arXiv: 0912.3651.

    Article  ADS  Google Scholar 

  80. S. Goriely, J. L. Sida, J. F. Lemaitre, S. Panebianco, N. Dubray, S. Hilaire, A. Bauswein, and H. T. Janka, Phys. Rev. Lett. 111, 242502 (2013), arXiv: 1311.5897.

    Article  ADS  Google Scholar 

  81. S. Shibagaki, T. Kajino, G. J. Mathews, S. Chiba, S. Nishimura, and G. Lorusso, Astrophys. J. 816, 79 (2016), arXiv: 1505.02257.

    Article  ADS  Google Scholar 

  82. I. V. Panov, C. Freiburghaus, and F. K. Thielemann, Nucl. Phys.. 688, 587 (2001).

    Article  Google Scholar 

  83. B. Cote, C. L. Fryer, K. Belczynski, O. Korobkin, M. Chruslinska, N. Vassh, M. R. Mumpower, J. Lippuner, T. M. Sprouse, R. Surman, and R. Wollaeger, Astrophys. J. 855, 99 (2018), arXiv: 1710.05875.

    Article  ADS  Google Scholar 

  84. B. C6te, M. Eichler, A. Arcones, C. J. Hansen, P. Simonetti, A. Frebel, C. L. Fryer, M. Pignatari, M. Reichert, K. Belczynski, and F. Matteucci, arXiv: 1809.03525.

  85. O. Korobkin, S. Rosswog, A. Arcones, and C. Winteler, Mon. Not. R. Astron. Soc. 426, 1940 (2012), arXiv: 1206.2379.

    Article  ADS  Google Scholar 

  86. S. Fujimoto, N. Nishimura, and M. Hashimoto, Astrophys. J. 680, 1350 (2008), arXiv: 0804.0969.

    Article  ADS  Google Scholar 

  87. L. Hüdepohl, B. Müller, H. T. Janka, A. Marek, and G. G. Raffelt, Phys. Rev. Lett. 105, 249901 (2010).

    Article  ADS  Google Scholar 

  88. L. F. Roberts, S. E. Woosley, and R. D. Hoffman, Astrophys. J. 722, 954 (2010), arXiv: 1004.4916.

    Article  ADS  Google Scholar 

  89. S. Goriely, A. Bauswein, and H. T. Janka, Astrophys. J. 738, L32 (2011), arXiv: 1107.0899.

    Google Scholar 

  90. M. Eichler, A. Arcones, A. Kelic, O. Korobkin, K. Langanke, T. Marketin, G. Martinez-Pinedo, I. Panov, T. Rauscher, S. Rosswog, C. Winteler, N. T. Zinner, and F. K. Thielemann, Astrophys. J. 808, 30 (2015), arXiv: 1411.0974.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZhongMing Niu or BaoHua Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Niu, Z. & Sun, B. Influence of nuclear physics inputs and astrophysical conditions on r-process. Sci. China Phys. Mech. Astron. 62, 982011 (2019). https://doi.org/10.1007/s11433-018-9355-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9355-y

Keywords

Navigation