Skip to main content
Log in

Localization of gravitino field on f(R)-thick branes

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this paper, we consider the localization of a five-dimensional gravitino field on f(R)-thick branes. We obtain the coupled chiral equations of the Kaluza-Klein (KK) modes of gravitinos with the gauge condition Ψz = 0. The chiral equations of a gravitino’s KK modes are found to be almost identical to those of the Dirac fermion. However, their chiralities are exactly opposite. The chiral KK modes of gravitinos could be localized in some types of f(R)-thick branes on introducing a coupling term. We investigate the localization of a gravitino on three types of f(R)-thick branes through a Yukawa-like coupling term with background scalar fields. It has been shown that all the KK modes of gravitinos cannot be localized in the pure geometric f(R)-thick branes by adding a five-dimensional gravitino mass term. However, for the f(R)-thick branes generated by one or two background scalar fields, only the left- or right-handed zero mode could be localized in the branes, and the massive KK resonant modes are the same for both left- and right-handed gravitinos despite their opposing chiralities. All these results are consistent with those of the five-dimensional Dirac fermion except their chiralities, which may be an important sign to distinguish the gravitino field and the Dirac fermion field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Akama, Lect. Notes Phys. 176, 267 (1982), arXiv: hep-th/0001113.

    Article  ADS  Google Scholar 

  2. V. A. Rubakov, and M. E. Shaposhnikov, Phys. Lett. B 125, 139 (1983).

    Article  ADS  Google Scholar 

  3. N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998), arXiv: hep-ph/9803315.

    Article  ADS  Google Scholar 

  4. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 436, 257 (1998).

    Article  ADS  Google Scholar 

  5. L. Randall, and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  6. L. Randall, and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  7. N. Arkani-Hamed, S. Dimopoulos, N. Kaloper, and R. Sundrum, Phys. Lett. B 480, 193 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  8. J. E. Kim, B. Kyae, and H. M. Lee, Phys. Rev. Lett. 86, 4223 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Nussinov, and R. Shrock, Phys. Rev. Lett. 88, 171601 (2002).

    Article  ADS  Google Scholar 

  10. A. A. Pankov, and N. Paver, Phys. Rev. D 72, 035012 (2005).

    Article  ADS  Google Scholar 

  11. A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 97, 171802 (2006).

    Article  ADS  Google Scholar 

  12. P. Dey, B. Mukhopadhyaya, and S. SenGupta, Phys. Rev. D 80, 055029 (2009), arXiv: 0904.1970.

    Article  ADS  Google Scholar 

  13. I. P. Neupane, Phys. Rev. D 83, 086004 (2011), arXiv: 1011.6357.

    Article  ADS  Google Scholar 

  14. S. Das, D. Maity, and S. SenGupta, J. High Energy Phys. 2008, 042 (2008), arXiv: 0711.1744.

    Article  Google Scholar 

  15. K. Yang, Y. X. Liu, Y. Zhong, X. L. Du, and S. W. Wei, Phys. Rev. D 86, 127502 (2012), arXiv: 1212.2735.

    Article  ADS  Google Scholar 

  16. G. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B 484, 112 (2000).

    Article  ADS  Google Scholar 

  17. G. D. Starkman, D. Stojkovic, and M. Trodden, Phys. Rev. Lett. 87, 231303 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  18. T. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berl. Math. Phys. K. 1, 966 (1921).

    Google Scholar 

  19. O. Klein, Z. Physik 37, 895 (1926).

    Article  ADS  Google Scholar 

  20. R. Gregory, V. A. Rubakov, and S. M. Sibiryakov, Phys. Rev. Lett. 84, 5928 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  21. N. Kaloper, J. March-Russell, G. D. Starkman, and M. Trodden, Phys. Rev. Lett. 85, 928 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Melfo, N. Pantoja, and A. Skirzewski, Phys. Rev. D 67, 105003 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  23. D. Bazeia, and A. R. Gomes, J. High Energy Phys. 2004, 012 (2004).

    Article  Google Scholar 

  24. A. Cardoso, K. Koyama, A. Mennim, S. S. Seahra, and D. Wands, Phys. Rev. D 75, 084002 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  25. Y. X. Liu, Y. Zhong, Z. H. Zhao, and H. T. Li, J. High Energ. Phys. 2011, 135 (2011), arXiv: 1104.3188.

    Article  Google Scholar 

  26. Y. X. Liu, K. Yang, H. Guo, and Y. Zhong, Phys. Rev. D 85, 124053 (2012), arXiv: 1203.2349.

    Article  ADS  Google Scholar 

  27. F. W. Chen, Y. X. Liu, Y. Zhong, Y. Q. Wang, and S. F. Wu, Phys. Rev. D 88, 104033 (2013), arXiv: 1201.5922.

    Article  ADS  Google Scholar 

  28. D. Bazeia, A. S. Lobao Jr., and R. Menezes, Phys. Lett. B 743, 98 (2015), arXiv: 1502.04757.

    Article  ADS  MathSciNet  Google Scholar 

  29. H. Yu, Y. Zhong, B. M. Gu, and Y. X. Liu, Eur. Phys. J. C 76, 195 (2016), arXiv: 1506.06458.

    Article  ADS  Google Scholar 

  30. S. Chang, J. Hisano, H. Nakano, N. Okada, and M. Yamaguchi, Phys. Rev. D 62, 084025 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  31. T. Shiromizu, K. Maeda, and M. Sasaki, Phys. Rev. D 62, 024012 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  32. A. Kehagias, and K. Tamvakis, Phys. Lett. B 504, 38 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  33. C. Ringeval, P. Peter, and J. P. Uzan, Phys. Rev. D 65, 044016 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  34. D. Maity, and S. SenGupta, Class. Quantum Grav. 21, 3379 (2004).

    Article  ADS  Google Scholar 

  35. A. Chatterjee, and P. Majumdar, Phys. Rev. D 72, 066013 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Melfo, N. Pantoja, and J. D. Tempo, Phys. Rev. D 73, 044033 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  37. Y. X. Liu, L. Zhao, and Y. S. Duan, J. High Energy Phys. 2007, 097 (2007).

    Article  Google Scholar 

  38. R. Davies, D. P. George, and R. R. Volkas, Phys. Rev. D 77, 124038 (2008), arXiv: 0705.1584.

    Article  ADS  Google Scholar 

  39. Y. X. Liu, J. Yang, Z. H. Zhao, C. E. Fu, and Y. S. Duan, Phys. Rev. D 80, 065019 (2009), arXiv: 0904.1785.

    Article  ADS  Google Scholar 

  40. R. Guerrero, A. Melfo, N. Pantoja, and R. O. Rodriguez, Phys. Rev. D 81, 086004 (2010), arXiv: 0912.0463.

    Article  ADS  Google Scholar 

  41. C. E. Fu, Y. X. Liu, K. Yang, and S. W. Wei, J. High Energ. Phys. 2012, 60 (2012), arXiv: 1207.3152.

    Article  Google Scholar 

  42. Q. Y. Xie, J. Yang, and L. Zhao, Phys. Rev. D 88, 105014 (2013), arXiv: 1310.4585.

    Article  ADS  Google Scholar 

  43. Y. X. Liu, Z. G. Xu, F. W. Chen, and S. W. Wei, Phys. Rev. D 89, 086001 (2014), arXiv: 1312.4145.

    Article  ADS  Google Scholar 

  44. Z. H. Zhao, Y. X. Liu, and Y. Zhong, Phys. Rev. D 90, 045031 (2014), arXiv: 1402.6480.

    Article  ADS  Google Scholar 

  45. H. Guo, Q. Y. Xie, and C. E. Fu, Phys. Rev. D 92, 106007 (2015), arXiv: 1408.6155.

    Article  ADS  Google Scholar 

  46. Y. Z. Du, L. Zhao, X. N. Zhou, Y. Zhong, and Y. X. Liu, Ann. Phys. 388, 69 (2018).

    Article  ADS  Google Scholar 

  47. P. Q. Hung, and N. K. Tran, Phys. Rev. D 69, 064003 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  48. H. Guo, A. Herrera-Aguilar, Y. X. Liu, D. Malagon-Morejon, and R. R. Mora-Luna, Phys. Rev. D 87, 095011 (2013), arXiv: 1103.2430.

    Article  ADS  Google Scholar 

  49. I. Sahin, M. Koksal, S. C. Inan, A. A. Billur, B. Sahin, P. Tekta§, E. Alici, and R. Yildirim, Phys. Rev. D 91, 035017 (2015), arXiv: 1409.1796.

    Article  ADS  Google Scholar 

  50. M. Bauer, C. Horner, and M. Neubert, J. High Energ. Phys. 2016, 94 (2016), arXiv: 1603.05978.

    Article  Google Scholar 

  51. C. A. S. Almeida, R. Casana, M. M. Ferreira, and A. R. Gomes, Phys. Rev. D 79, 125022 (2009), arXiv: 0901.3543.

    Article  ADS  MathSciNet  Google Scholar 

  52. Y. X. Liu, H. T. Li, Z. H. Zhao, J. X. Li, and J. R. Ren, J. High Energy Phys. 2009, 091 (2009), arXiv: 0909.2312.

    Article  Google Scholar 

  53. Q. Y. Xie, H. Guo, Z. H. Zhao, Y. Z. Du, and Y. P. Zhang, Class. Quant. Grav. 34, 055007 (2017), arXiv:.1510.033445.

    Article  ADS  Google Scholar 

  54. R. R. Landim, G. Alencar, M. O. Tahim, and R. N. C. Filho, J. High Energ. Phys. 2011, 71 (2011), arXiv: 1105.5573.

    Article  Google Scholar 

  55. Y. Z. Du, L. Zhao, Y. Zhong, C. E. Fu, and H. Guo, Phys. Rev. D 88, 024009 (2013), arXiv: 1301.3204.

    Article  ADS  Google Scholar 

  56. Y. P. Zhang, Y. Z. Du, W. D. Guo, and Y. X. Liu, Phys. Rev. D 93, 065042 (2016), arXiv: 1601.05852.

    Article  ADS  MathSciNet  Google Scholar 

  57. Z. G. Xu, Y. Zhong, H. Yu, and Y. X. Liu, Eur. Phys. J. C 75, 368 (2015), arXiv: 1405.6277.

    Article  ADS  Google Scholar 

  58. E. J. Chun, H. B. Kim, and J. E. Kim, Phys. Rev. Lett. 72, 1956 (1994).

    Article  ADS  Google Scholar 

  59. T. Moroi, arXiv: hep-ph/9503210.

  60. F. D. Steffen, J. Cosmol. Astropart. Phys. 2006, 001 (2006).

    Article  ADS  Google Scholar 

  61. J. L. Feng, M. Kamionkowski, and S. K. Lee, Phys. Rev. D 82, 015012 (2010), arXiv: 1004.4213.

    Article  ADS  Google Scholar 

  62. K. G. Savvidy, and J. D. Vergados, Phys. Rev. D 87, 075013 (2013), arXiv: 1211.3214.

    Article  ADS  Google Scholar 

  63. S. Shirai, and T. T. Yanagida, Phys. Lett. B 680, 351 (2009), arXiv: 0905.4034.

    Article  ADS  Google Scholar 

  64. M. Y. Khlopov, A. Barrau, and J. Grain, Class. Quantum Grav. 23, 1875 (2006).

    Article  ADS  Google Scholar 

  65. A. Yale, and R. B. Mann, Phys. Lett. B 673, 168 (2009), arXiv: 0808.2820.

    Article  ADS  MathSciNet  Google Scholar 

  66. P. Arnold, P. Szepietowski, and D. Vaman, Phys. Rev. D 89, 046001 (2014), arXiv: 1311.6409.

    Article  ADS  Google Scholar 

  67. C.-H. Chen, H. T. Cho, A. S. Cornell, G. Harmsen, and W. Naylor, Chin. J. Phys. 53, 110101 (2015).

    Google Scholar 

  68. B. Bajc, and G. Gabadadze, Phys. Lett. B 474, 282 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  69. I. Oda, Phys. Lett. B 508, 96 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  70. T. Gherghetta, and A. Pomarol, Nucl. Phys. B 602, 3 (2001).

    Article  ADS  Google Scholar 

  71. I. Oda, Prog. Theor. Phys. 105, 667 (2001).

    Article  ADS  Google Scholar 

  72. J. A. L. Hewett, and D. Sadri, Phys. Rev. D 69, 015001 (2004).

    Article  ADS  Google Scholar 

  73. H. M. Lee, and A. Papazoglou, Nucl. Phys. B 792, 166 (2008), arXiv: 0705.1157.

    Article  ADS  Google Scholar 

  74. Y. Zhong, C. E. Fu, and Y. X. Liu, Sci. China-Phys. Mech. Astron. 61, 090411 (2018).

    Article  Google Scholar 

  75. S. W. Wei, Y. X. Liu, and C. E. Fu, Sci. China-Phys. Mech. Astron. 59, 640401 (2016).

    Article  Google Scholar 

  76. D. Z. He, J. F. Zhang, and X. Zhang, Sci. China-Phys. Mech. Astron. 60, 039511 (2017), arXiv: 1607.05643.

    Article  ADS  Google Scholar 

  77. X. Zhang, Sci. China-Phys. Mech. Astron. 60, 050431 (2017), arXiv: 1702.04564.

    Article  ADS  Google Scholar 

  78. T. P. Sotiriou, and V. Faraoni, Rev. Mod. Phys. 82, 451 (2010), arXiv: 0805.1726.

    Article  ADS  Google Scholar 

  79. A. De Felice, and S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010), arXiv: 1002.4928.

    Article  ADS  Google Scholar 

  80. S. Nojiri, and S. D. Odintsov, Phys. Rep. 505, 59 (2011), arXiv: 1011.0544.

    Article  ADS  MathSciNet  Google Scholar 

  81. S. Nojiri, and S. D. Odintsov, J. High Energy Phys. 2000, 049 (2000).

    Article  Google Scholar 

  82. S. Nojiri, S. D. Odintsov, and S. Ogushi, Phys. Rev. D 65, 023521 (2001).

    Article  ADS  Google Scholar 

  83. M. Giovannini, Phys. Rev. D 65, 064008 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  84. V. I. Afonso, D. Bazeia, R. Menezes, and A. Y. Petrov, Phys. Lett. B 658, 71 (2007), arXiv: 0710.3790.

    Article  ADS  MathSciNet  Google Scholar 

  85. V. Dzhunushaliev, V. Folomeev, B. Kleihaus, and J. Kunz, J. High Energ. Phys. 2010, 130 (2010), arXiv: 0912.2812.

    Article  Google Scholar 

  86. H. Liu, H. Lü, and Z. L. Wang, J. High Energ. Phys. 2012, 83 (2012), arXiv: 1111.6602.

    Article  Google Scholar 

  87. D. Bazeia, A. S. LLobao, L. Losano, R. Menezes, and G. J. Olmo, Phys. Rev. D 91, 124006 (2015), arXiv: 1505.06315.

    Article  ADS  MathSciNet  Google Scholar 

  88. Y. Zhong, Y. X. Liu, and K. Yang, Phys. Lett. B 699, 398 (2011), arXiv: 1010.3478.

    Article  ADS  Google Scholar 

  89. Y. Zhong, and Y. X. Liu, Phys. Rev. D 88, 024017 (2013), arXiv: 1307.7639.

    Article  ADS  Google Scholar 

  90. Y. Zhong, and Y. X. Liu, Eur. Phys. J. C 76, 321 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuXiao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Du, Y., Yu, H. et al. Localization of gravitino field on f(R)-thick branes. Sci. China Phys. Mech. Astron. 61, 110411 (2018). https://doi.org/10.1007/s11433-018-9246-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9246-2

Keywords

Navigation