Skip to main content
Log in

Second-order magnetic field gradient-induced strong coupling between nitrogen-vacancy centers and a mechanical oscillator

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We consider a cantilever mechanical oscillator (MO) made of diamond. A nitrogen-vacancy (NV) center lies at the end of the cantilever. Two magnetic tips near the NV center induce a strong second-order magnetic field gradient. Under coherent driving of the MO, we find that the coupling between the MO and the NV center is greatly enhanced. We studied how to generate entanglement between the MO and the NV center and realize quantum state transfer between them. We also propose a scheme to generate two-mode squeezing between different MO modes by coupling them to the same NV center. The decoherence and dissipation effects for both the MO and the NV center are numerically calculated using the present parameter values of the experimental configuration. We have achieved high fidelity for entanglement generation, quantum state transfer, and large two-mode squeezing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014).

    Article  ADS  Google Scholar 

  2. Z. Q. Yin, A. A. Geraci, and T. Li, Int. J. Mod. Phys. B 27, 1330018 (2013).

    Article  ADS  Google Scholar 

  3. Y. D. Wang, and A. A. Clerk, Phys. Rev. Lett. 108, 153603 (2012).

    Article  ADS  Google Scholar 

  4. L. Tian, Phys. Rev. Lett. 108, 153604 (2012).

    Article  ADS  Google Scholar 

  5. R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Sim-monds, C. A. Regal, and K. W. Lehnert, Nat. Phys. 10, 321 (2014).

    Article  Google Scholar 

  6. Z. Yin, W. L. Yang, L. Sun, and L. M. Duan, Phys. Rev. A 91, 012333 (2015).

    Article  ADS  Google Scholar 

  7. Y. C. Liu, Y. F. Xiao, X. Luan, and C. W. Wong, Sci. China-Phys. Mech. Astron. 58, 050305 (2015).

    Google Scholar 

  8. Y. Yan, W. J. Gu, and G. X. Li, Sci. China-Phys. Mech. Astron. 58, 050306 (2015).

    Google Scholar 

  9. G. Z. Wang, M. M. Zhao, J. Y. Ma, G. Y. Li, Y. Chen, X. S. Jiang, and M. Xiao, Sci. China-Phys. Mech. Astron. 58, 1 (2015).

    Google Scholar 

  10. M. Gao, F. C. Lei, C. G. Du, and G. L. Long, Sci. China-Phys. Mech. Astron. 59, 610301 (2016).

    Article  Google Scholar 

  11. A. M. Flatae, M. Burresi, H. Zeng, S. Nocentini, S. Wiegele, C. Parmeggiani, H. Kalt, and D. Wiersma, Light Sci Appl 4, e282 (2015).

    Article  Google Scholar 

  12. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Phys. Rev. Lett. 99, 093901 (2007).

    Article  ADS  Google Scholar 

  13. Y. S. Park, and H. Wang, Nat. Phys. 5, 489 (2009).

    Article  Google Scholar 

  14. Y. C. Liu, R. S. Liu, C. H. Dong, Y. Li, Q. Gong, and Y. F. Xiao, Phys. Rev. A 91, 013824 (2015).

    Article  ADS  Google Scholar 

  15. S. M. Meenehan, J. D. Cohen, G. S. MacCabe, F. Marsili, M. D. Shaw, and O. Painter, Phys. Rev. X 5, 041002 (2015).

    Google Scholar 

  16. D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, Nature 430, 329 (2004).

    Article  ADS  Google Scholar 

  17. P. Rabl, P. Cappellaro, M. V. G. Dutt, L. Jiang, J. R. Maze, and M. D. Lukin, Phys. Rev. B 79, 041302 (2009).

    Article  ADS  Google Scholar 

  18. Z. Y. Xu, Y. M. Hu, W. L. Yang, M. Feng, and J. F. Du, Phys. Rev. A 80, 022335 (2009).

    Article  ADS  Google Scholar 

  19. L. Zhou, L. F. Wei, M. Gao, and X. Wang, Phys. Rev. A 81, 042323 (2010).

    Article  ADS  Google Scholar 

  20. D. Gevaux, Nat. Phys. 6, 8 (2010).

    Article  Google Scholar 

  21. P. B. Li, Y. C. Liu, S. Y. Gao, Z. L. Xiang, P. Rabl, Y. F. Xiao, and F. L. Li, Phys. Rev. Appl. 4, 044003 (2015).

    Article  ADS  Google Scholar 

  22. P. B. Li, Z. L. Xiang, P. Rabl, and F. Nori, Phys. Rev. Lett. 117, 015502 (2016).

    Article  ADS  Google Scholar 

  23. A. D. OConnell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, Nature 464, 697 (2010).

    Article  ADS  Google Scholar 

  24. O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, Nat. Phys. 7, 879 (2011).

    Article  Google Scholar 

  25. S. Kolkowitz, A. C. Bleszynski Jayich, Q. P. Unterreithmeier, S. D. Bennett, P. Rabl, J. G. E. Harris, and M. D. Lukin, Science 335, 1603 (2012).

    Article  ADS  Google Scholar 

  26. L. P. Neukirch, E. von Haartman, J. M. Rosenholm, and A. Nick Vami-vakas, Nat. Photon 9, 653 (2015).

    Article  ADS  Google Scholar 

  27. T. M. Hoang, J. Ahn, J. Bang, and T. Li, Nat. Commun. 7, 12250 (2016).

    Article  ADS  Google Scholar 

  28. Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, Nat. Commun. 5, 3638 (2014).

    Article  ADS  Google Scholar 

  29. D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, Phys. Rev. Lett. 116, 143602 (2016).

    Article  ADS  Google Scholar 

  30. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, Phys. Rep. 528, 1 (2013).

    Article  ADS  Google Scholar 

  31. S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, Phys. Rev. Lett. 110, 156402 (2013).

    Article  ADS  Google Scholar 

  32. J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, Phys. Rev. Lett. 113, 020503 (2014).

    Article  ADS  Google Scholar 

  33. A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, and P. Maletinsky, Nat. Phys. 11, 820 (2015).

    Article  Google Scholar 

  34. Z. Q. Yin, N. Zhao, and T. C. Li, Sci. China-Phys. Mech. Astron. 58, 050303 (2015).

    Article  Google Scholar 

  35. T. C. Li, and Z. Q. Yin, Sci. Bull. 61, 163 (2016).

    Article  Google Scholar 

  36. Z. Yin, T. Li, X. Zhang, and L. M. Duan, Phys. Rev. A 88, 033614 (2013).

    Article  ADS  Google Scholar 

  37. W. Ge, and M. Bhattacharya, New J. Phys. 18, 103002 (2016).

    Article  ADS  Google Scholar 

  38. Y. Ma, Z. Yin, P. Huang, W. L. Yang, and J. Du, Phys. Rev. A 94, 053836 (2016).

    Article  ADS  Google Scholar 

  39. Z. Yin, Phys. Rev. A 80, 033821 (2009).

    Article  ADS  Google Scholar 

  40. M. O. Scully, and M. S. Zubairy, Quantum Optics (Cambridge Univer-sity Press, Cambridge, 2012).

    MATH  Google Scholar 

  41. P. Huang, J. Zhou, L. Zhang, D. Hou, S. Lin, W. Deng, C. Meng, C. Duan, C. Ju, X. Zheng, F. Xue, and J. Du, Nat. Commun. 7, 11517 (2016).

    Article  ADS  Google Scholar 

  42. Z. Yin, and F. Li, Phys. Rev. A 75, 012324 (2007).

    Article  ADS  Google Scholar 

  43. A. Peres, Phys. Rev. Lett. 77, 3264 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  44. G. Vidal, and R. F. Werner, Phys. Rev. A 65, 032314 (2002).

    Article  ADS  Google Scholar 

  45. D. F. James, and J. Jerke, Can. J. Phys. 85, 625 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZhangQi Yin or GuiLu Long.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61435007, 11175094, 91221205), and the National Basic Research Program of China (Grant No. 2015CB921002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, K., Wang, R., Yin, Z. et al. Second-order magnetic field gradient-induced strong coupling between nitrogen-vacancy centers and a mechanical oscillator. Sci. China Phys. Mech. Astron. 60, 070311 (2017). https://doi.org/10.1007/s11433-017-9039-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9039-0

Keywords

Navigation