Skip to main content
Log in

Hybrid opto-mechanical systems with nitrogen-vacancy centers

  • Review
  • Special Topic: Optomechanics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this review, we briefly review recent works on hybrid (nano) opto-mechanical systems that contain both mechanical oscillators and diamond nitrogen-vacancy (NV) centers. We also review two different types of mechanical oscillators. The first one is a clamped mechanical oscillator, such as a cantilever, with a fixed frequency. The second one is an optically trapped nano-diamond with a built-in nitrogen-vacancy center. By coupling mechanical resonators with electron spins, we can use the spins to control the motion of mechanical oscillators. For the first setup, we discuss two different coupling mechanisms, which are magnetic coupling and strain induced coupling. We summarize their applications such as cooling the mechanical oscillator, generating entanglements between NV centers, squeezing spin ensembles etc. For the second setup, we discuss how to generate quantum superposition states with magnetic coupling, and realize matter wave interferometer. We will also review its applications as ultra-sensitive mass spectrometer. Finally, we discuss new coupling mechanisms and applications of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wieman C E, Pritchard D E, Wineland D J. Atom cooling, trapping, and quantum manipulation. Rev Mod Phys, 1999, 71: S253–S262

    Article  Google Scholar 

  2. Wineland D J. Nobel Lecture: Superposition, entanglement, and raising Schrödingers cat. Rev Mod Phys, 2013, 85: 1103–1114

    Article  ADS  Google Scholar 

  3. Monroe C, Meekhof D M, King B E, et al. A Schrödinger cat superposition state of an atom. Science, 1996, 272(5265): 1131–1136

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Einstein A. On the development of our views concerning the nature and constitution of radiation. Physica Z, 1909, 10: 817

    Google Scholar 

  5. Braginski V B, Manukin A B. Ponderomotive effects of electromagnetic radiation. Sov Phys-JETP, 1967, 25: 653–655

    ADS  Google Scholar 

  6. Ashkin A. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett, 1970, 24: 156–159

    Article  ADS  Google Scholar 

  7. Ashkin A, Dziedzic J M. Optical levitation by radiation pressure. Appl Phys Lett, 1971, 19: 283–285

    Article  ADS  Google Scholar 

  8. Aspelmeyer M, Meystre P, Schwab K. Quantum optomechanics. Phys Tod, 2012, 65: 29–35

    Article  ADS  Google Scholar 

  9. Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics. Rev Mod Phys, 2014, 86: 1391

    Article  ADS  Google Scholar 

  10. Liu Y C, Hu Y W, Wong C W, et al. Review of cavity optomechanical cooling. Chin Phys B, 2013, 22: 114213

    Article  ADS  Google Scholar 

  11. OConnell A D, Hofheinz M, Ansmann M, et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature, 2010, 464: 697–703

    Article  ADS  Google Scholar 

  12. Teufel J D, Donner T, Li D, et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature, 2011, 475: 359–363

    Article  ADS  Google Scholar 

  13. Chan J, Alegre T P M, Safavi-Naeini A H, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 2011, 478: 89–92

    Article  ADS  Google Scholar 

  14. Verhagen E, Deléglise S, Weis S, et al. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature, 2012, 482 (7383): 63–67

    Article  ADS  Google Scholar 

  15. Weis S, Riviére R, Deléglise S, et al. Optomechanically induced transparency. Science, 2010, 330: 1520–1523

    Article  ADS  Google Scholar 

  16. Dong C H, Shen Z, Zou C L, et al. Interconversion of photon-phonon in a silica optomechanical microresonator. Sci China-Phys Mech Astron, 2015, 58: 050308

    Google Scholar 

  17. Liu Y-C, Xiao Y-F, Luan X S, et al. Optomechanically-inducedtransparency cooling of massive mechanical resonators to the quantum ground state. Sci China-Phys Mech Astron, 2015, 58: 050305

    Google Scholar 

  18. Purdy T P, Yu P L, Peterson RW, et al. Strong optomechanical squeezing of light. Phys Rev X, 2013, 3: 031012

    Google Scholar 

  19. Wang Y D, Clerk A A. Using interference for high fidelity quantum state transfer in optomechanics. Phys Rev Lett, 2012, 108: 153603

    Article  ADS  Google Scholar 

  20. Andrews R W, Peterson R W, Purdy T P, et al. Bidirectional and efficient conversion between microwave and optical light. Nat Phys, 2014, 10: 321–326

    Article  Google Scholar 

  21. Yin Z, Yang W L, Sun L, et al. Quantum network of superconducting qubits through opto-mechanical interface. Phys Rev A, 2015, 91: 012333

    Article  ADS  Google Scholar 

  22. Romero-Isart O, Pflanzer A C, Blaser F, et al. Large quantum superpositions and interference of massive nanometer-sized objects. Phys Review Lett, 2011, 107: 020405

    Article  ADS  Google Scholar 

  23. Romero-Isart O, Juan M L, Quidant R, et al. Toward quantum superposition of living organisms. New J Phys, 2010, 12: 033015

    Article  Google Scholar 

  24. Penrose R. On gravity’s role in quantum state reduction. General Relativity Gravitation, 1996, 28: 581–600

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Ghirardi G C, Rimini A, Weber T. Unified dynamics for microscopic and macroscopic systems. Phys Rev D, 1986, 34: 470–491

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Ghirardi G C, Pearle P, Rimini A. Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys Rev A, 1990, 42: 78–89

    Article  ADS  MathSciNet  Google Scholar 

  27. Xiong H, Si L G, Lü X Y, et al. Review of cavity optomechanics in the weak-coupling regime: From linearization to intrinsic nonlinear interactions. Sci China-Phys Mech Astron, 2015, 58: 050302

    Google Scholar 

  28. Wilson-Rae I, Zoller P, Imamoglu A. Laser cooling of a nanomechanical resonator mode to its quantum ground state. Phys Rev Lett, 2004, 92: 075507

    Article  ADS  Google Scholar 

  29. Bennett S D, Cockins L, Miyahara Y, et al. Strong electromechanical coupling of an atomic force microscope cantilever to a quantum dot. Phys Rev Lett, 2010, 104: 017203

    Article  ADS  Google Scholar 

  30. Hammerer K, Wallquist M, Genes C, et al. Strong coupling of a mechanical oscillator and a single atom. Phys Rev Lett, 2009, 103: 063005

    Article  ADS  Google Scholar 

  31. Rabl P, Cappellaro P, Dutt M V G, et al. Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Phys Rev B, 2009, 79: 041302

    Article  ADS  Google Scholar 

  32. Rabl P, Kolkowitz S J, Koppens F H L, et al. A quantum spin transducer based on nanoelectromechanical resonator arrays. Nat Phys, 2010, 6: 602–608

    Article  Google Scholar 

  33. Arcizet O, Jacques V, Siria A, et al. A single nitrogen-vacancy defect coupled to a nanomechanical oscillator. Nat Phys, 2011, 7: 879–883

    Article  Google Scholar 

  34. Kolkowitz S, Jayich A C B, Unterreithmeier Q P, et al. Coherent sensing of a mechanical resonator with a single-spin qubit. Science, 2012, 335: 1603–1606

    Article  ADS  Google Scholar 

  35. Bar-Gill N, Pham L M, Belthangady C, et al. Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems. Nat Commun, 2012, 3: 858

    Article  ADS  Google Scholar 

  36. Balasubramanian G, Neumann P, Twitchen D, et al. Ultralong spin coherence time in isotopically engineered diamond. Nat Mater, 2009, 8: 383–387

    Article  ADS  Google Scholar 

  37. Zhao N, Honert J, Schmid B, et al. Sensing single remote nuclear spins. Nat Nanotech, 2012, 7: 657–662

    Article  ADS  Google Scholar 

  38. Shi F, Kong X, Wang P, et al. Sensing and atomic-scale structure analysis of single nuclear-spin clusters in diamond. Nat Phys, 2014, 10: 21–25

    Article  Google Scholar 

  39. Bennett S D, Yao N Y, Otterbach J, et al. Phonon-induced spin-spin interactions in diamond nanostructures: Application to spin squeezing. Phys Rev Lett, 2013, 110: 156402

    Article  ADS  Google Scholar 

  40. Zhang J Q, Zhang S, Zou J H, et al. Fast optical cooling of nanomechanical cantilever with the dynamical Zeeman effect. Opt Express, 2013, 21: 29695–29710

    Article  Google Scholar 

  41. Kepesidis K V, Bennett S D, Portolan S, et al. Phonon cooling and lasing with nitrogen-vacancy centers in diamond. Phy Rev B, 2013, 88(6): 064105

    Article  ADS  Google Scholar 

  42. Zwickl B M, Shanks W E, Jayich A M, et al. High quality mechanical and optical properties of commercial silicon nitride membranes. Appl Phys Lett, 2008, 92: 103125

    Article  ADS  Google Scholar 

  43. Chang D E, Regal C A, Papp S B, et al. Cavity opto-mechanics using an optically levitated nanosphere. PNAS, 2010, 107: 1005–1010

    Article  ADS  Google Scholar 

  44. Li T, Kheifets S, Raizen M G. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat Phys, 2011, 7: 527–530

    Article  Google Scholar 

  45. Gieseler J, Deutsch B, Quidant R, et al. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys Rev Lett, 2012, 109: 103603

    Article  ADS  Google Scholar 

  46. Yin Z, Li T, Feng M. Three-dimensional cooling and detection of a nanosphere with a single cavity. Phys Rev A, 2011, 83: 013816

    Article  ADS  Google Scholar 

  47. Kiesel N, Blaser F, Delić U, et al. Cavity cooling of an optically levitated submicron particle. PNAS, 2013, 110: 14180–14185

    Article  ADS  Google Scholar 

  48. Yin Z, Geraci A A, Li T. Optomechanics of levitated dielectric particles. Int J Mod Phys B, 2013, 27: 1330018

    Article  ADS  MathSciNet  Google Scholar 

  49. Neukirch L P, Vamivakas A N. Nano-optomechanics with optically levitated nanoparticles. Contemporary Phys, 2014, Doi: 10. 1080/00107514. 2014. 969492

    Google Scholar 

  50. Nie W, Lan Y, Li Y, et al. Dynamics of a levitated nanosphere by optomechanical coupling and Casimir interaction. Phys Rev A, 2013, 88: 063849

    Article  ADS  Google Scholar 

  51. Nie W J, Lan Y H, Li Y, et al. Generating large steady-state optomechanical entanglement by the action of Casimir force. Sci China-Phys Mech Astron, 2014, 57: 2276–2284

    Article  ADS  Google Scholar 

  52. Liu Y C, Liu R S, Dong C H, et al. Cooling mechanical resonators to quantum ground state from room temperature. Phys Rev A, 2014, 91: 013824

    Article  ADS  Google Scholar 

  53. Yin Z, Li T, Zhang X, et al. Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling. Phys Rev A, 2013, 88: 033614

    Article  ADS  Google Scholar 

  54. Neukirch L P, Gieseler J, Quidant R, et al. Observation of nitrogen vacancy photoluminescence from an optically levitated nanodiamond. Opt Lett, 2013, 38: 2976–2979

    Article  ADS  Google Scholar 

  55. Scala M, Kim M S, Morley G W, et al. Matter-wave interferometry of a levitated thermal nano-oscillator induced and probed by a spin. Phys Rev Lett, 2013, 111: 180403

    Article  ADS  Google Scholar 

  56. Asadian A, Brukner C, Rabl P. Probing macroscopic realism via ramsey correlation measurements. Phys Rev Lett, 2014, 112: 190402

    Article  ADS  Google Scholar 

  57. Zhao N, Yin Z. Room-temperature ultra-sensitive mass spectrometer via dynamic decoupling. Phys Rev A, 2013, 90: 042118

    Article  ADS  Google Scholar 

  58. Rabl P. Cooling of mechanical motion with a two-level system: The high-temperature regime. Phys Rev B, 2010, 82: 165320

    Article  ADS  Google Scholar 

  59. Zhou L, Wei L F, Gao M, et al. Strong coupling between two distant electronic spins via a nanomechanical resonator. Phys Rev A, 2010, 81: 042323

    Article  ADS  Google Scholar 

  60. Xu Z Y, Hu Y M, Yang WL, et al. Deterministically entangling distant nitrogen-vacancy centers by a nanomechanical cantilever. Phys Rev A, 2009, 80: 022335

    Article  ADS  Google Scholar 

  61. Chen Q, Xu Z, Feng M. Entanglement generation of nitrogen-vacancy centers via coupling to nanometer-sized resonators and a superconducting interference device. Phys Rev A, 2010, 82: 014302

    Article  ADS  Google Scholar 

  62. Zheng S B, Guo G C. Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys Rev Lett, 2000, 85: 2392–2395

    Article  ADS  Google Scholar 

  63. Doherty M W, Dolde F, Fedder H, et al. Theory of the ground-state spin of the NV-center in diamond. Phys Rev B, 2012, 85: 205203

    Article  ADS  Google Scholar 

  64. Dolde F, Fedder H, Doherty M W, et al. Electric-field sensing using single diamond spins. Nat Phys, 2011, 7: 459–463

    Article  Google Scholar 

  65. Teissier J, Barfuss A, Appel P, et al. Strain coupling of a nitrogenvacancy center spin to a diamond mechanical oscillator. Phys Rev Lett, 2014, 113: 020503

    Article  ADS  Google Scholar 

  66. Ma J, Wang X, Sun C P, et al. Quantum spin squeezing. Phys Rep, 2011, 509: 89–165

    Article  ADS  MathSciNet  Google Scholar 

  67. Robledo L, Childress L, Bernien H, et al. High-fidelity projective readout of a solid-state spin quantum register. Nature, 2011, 477: 574–578

    Article  ADS  Google Scholar 

  68. Tsang C, Bonhote C, Dai Q, et al. Head challenges for perpendicular recording at high areal density. IEEE Trans Magn, 2006, 42: 145–150

    Article  ADS  Google Scholar 

  69. Mamin H J, Poggio M, Degen C L, et al. Nuclear magnetic resonance imaging with 90-nm resolution. Nat Nanotech, 2007, 2: 301–306

    Article  ADS  Google Scholar 

  70. Chen X, Ruschhaupt A, Schmidt S, et al. Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity. Phys Rev Lett, 2010, 104: 063002

    Article  ADS  Google Scholar 

  71. Kuhlicke A, Schell A W, Zoll J, et al. Nitrogen vacancy center fluorescence from a submicron diamond cluster levitated in a linear quadrupole ion trap. Appl Phys Lett, 2014, 105: 073101

    Article  ADS  Google Scholar 

  72. Maclaurin D, Doherty MW, Hollenberg L C L, et al. Measurable quantum geometric phase from a rotating single spin. Phys Rev Lett, 2012, 108: 240403

    Article  ADS  Google Scholar 

  73. Kowarsky M A, Hollenberg L C L, Martin A M. Non-Abelian geometric phase in the diamond nitrogen-vacancy center. Phys Rev A, 2014 90: 042116

    Article  ADS  Google Scholar 

  74. Seletskiy D V, Melgaard S D, Bigotta S, et al. Laser cooling of solids to cryogenic temperatures. Nat Photon, 2010, 4: 161–164

    Article  ADS  Google Scholar 

  75. Zhang J, Li D, Chen R, et al. Laser cooling of a semiconductor by 40 kelvin. Nature, 2013, 493: 504–508

    Article  ADS  Google Scholar 

  76. Bell DM, Howder C R, Johnson R C, et al. Single CdSe/ZnS nanocrystals in an ion trap: Charge and mass determination and photophysics evolution with changing mass, charge, and temperature. ACS Nano, 2014, 8: 2387–2398

    Article  Google Scholar 

  77. Steger M, Saeedi K, Thewalt M L W, et al. Quantum information storage for over 180 s using donor spins in a 28Si “semiconductor vacuum”. Science, 2012, 336: 1280–1283

    Article  ADS  Google Scholar 

  78. Afzelius M, Chaneliére T, Cone R L, et al. Photon-echo quantum memory in solid state systems. Laser Photon Rev, 2010, 4: 244–267

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZhangQi Yin, Nan Zhao or TongCang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Z., Zhao, N. & Li, T. Hybrid opto-mechanical systems with nitrogen-vacancy centers. Sci. China Phys. Mech. Astron. 58, 1–12 (2015). https://doi.org/10.1007/s11433-015-5651-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-015-5651-1

Keywords

Navigation